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Joint Impedance and Facies Inversion –  
Seismic inversion redefined

Michael Kemper1* and James Gunning2 present a new seismic inversion system, which aims to 
overcome shortcomings in present-day simultaneous inversion tools by using joint impedance 
and facies inversion technology.

I n this paper we will first review the industry-standard 
simultaneous inversion method (which derives continuous 
impedances) and subsequently identify some pitfalls. We 
will then introduce our new Joint Impedance and Facies 

Inversion technology (which we call Ji-Fi for short in this 
paper), which overcomes these pitfalls by recasting the seismic 
inverse problem as mixed discrete/continuous. Having so cap-
tured the correct physics, we apply this first on a wedge model, 
followed by a case study, before drawing some conclusions.

Note that in this paper, it is assumed that the seismic to 
be inverted is an ensemble of true amplitude partial angle 
stacks with corresponding wavelets derived from well ties.

Simultaneous inversion to date

Deterministic method
We start in this case with the Fatti (1994) equation (other 
approximations to the Zoeppritz (1919) equation such as 
Aki and Richards (1980) or Bortfeld (1961) are equally valid 
starting points):

Rpp(θ) = aRAI + bRSI + cRρ (1)

Where:
n	 RAI = ΔVp/(2Vp) + Δρ/(2ρ)
n	 RSI = ΔVs/(2Vs) + Δρ/(2ρ)
n	 Rρ = Δρ/(2ρ)
n	 a = 1 + tan2θ
n	 b = -8 (Vs/Vp)2 sin2θ
n	 c = 4 (Vs/Vp)2 sin2θ - tan2θ

We can turn reflectivity Rpp(θ) in (1) into synthetic seismic 
Spp(θ) by convolving with wavelet W(θ):

Spp(θ) = a W(θ)RAI + b W(θ)RSI + c W(θ)Rρ (2)

Subsequently we can use the small contrast approximation 
RAI = (AI2 - AI1) / (AI2 + AI1) = ½ ΔAI / AI ≈ ½ ΔLn(AI), 
same for RSI and Rρ, to rewrite (2) as

Spp(θ) = a/2 W(θ) ΔLn(AI) + b/2 W(θ) ΔLn(SI) + 
 c/2 W(θ) ΔLn(ρ) (3)

We know that if we proceed on the basis of (3), we obtain 
results that are not credible when compared to the impedances 
at the wells, as the seismic inverse problem is very underdeter-
mined. So a first element of regularization is often introduced at 
this stage, often taking the form of a ‘trick’. For instance, Ln(SI) 
and Ln(ρ) are commonly linearized with respect to Ln(AI):

Ln(SI) = αSI Ln(AI) + βSI + δLn(SI) (4a)

Ln(ρ) = αρ Ln(AI) + βρ + δLn(ρ) (4b)

Where:
n	 αSI, βSI are slope and intercept of the SI vs. AI linearization
n	 αρ, βρ are slope and intercept of the ρ vs. AI linearization
n	 δLn(SI) is the deviation away from the SI vs. AI lineariza-

tion (as Ln(SI) is not quite linearly related to Ln(AI) – AI 
and SI contain independent information)

n	 δLn(ρ) is the deviation away from the ρ vs. AI lineariza-
tion (same remark as above)

Inserting (4a) and (4b) into (3) leads to

Spp(θ) = a′/2 W(θ) ΔLn(AI) + b/2 W(θ) ΔδLn(SI) + 
 c/2 W(θ) ΔδLn(ρ) (5)

Where:
n	 a′ = a + αSI b + αρ c

Equation (5) indicated that we invert to Ln(AI), δLn(SI) and 
δLn(ρ), i.e. for Ln(SI) and Ln(ρ) we invert for the deviation 
from the linearizations expressed in (4a, 4b).

Because of the convolution by W(θ), equation (5) cannot 
be applied sample-by-sample. Instead it is used trace-by-
trace (this can be extended to multi-trace; not discussed 
here). Therefore Ln(AI), δLn(SI) and δLn(ρ) can be seen as 
column vectors which we stack on top of one another to 
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prior information, if well chosen, will provide adequate regu-
larization. Bayes’s Theorem in this case can be written as:

π(Z|Sreal) ≈ L(Sreal|Z) p(Z) (7)

Where:
n	 π(Z|Sreal) is the posterior distribution
n	 L(Sreal|Z) the likelihood function
n	 p(Z) the prior distribution.

It is customary (Buland and Omre, 2003) to represent the 
distributions as being multi-normal; this is often very reason-
able, and makes the mathematics more tractable.

The prior distribution p(Z) can be obtained from a linear 
depth trend of, say, AI and cross-plots between AI vs. SI 
and AI vs. ρ (all typically derived from well data but could 
come from simple 1D basin modelling or from an analogue 
database, and all with an assessment of uncertainty). These 
trend fits can be expressed as a multi-normal prior distribu-
tion p(Z) of form

p(Z) ~ exp{-½(Z - Zo)T Cp
-1 (Z - Zo)} / |Cp|

½ (8)

Where:
n	 Cp is the covariance matrix describing the variance of and 

the correlation between the impedances

The likelihood function L(Sreal|Z) can be expressed as

L(Sreal|Z) ~ exp{-½(Sreal - F(Z))T Cd
-1 (Sreal - F(Z))} / |Cd|

½ (9)
 
Where:
n	 F(Z) is the function to derive synthetic seismic from the 

impedances Z, as described above under ‘Deterministic 
method’

n	 Cd is the covariance matrix representing the seismic noise.

The (un-scaled) posterior distribution can be derived using (7), 
from which we can derive the maximum a-posteriori (MAP) 
model of Z or we can use McMC sampling to obtain marginal 
distributions of interest (Gunning and Glinsky, 2004).

Pitfalls of conventional simultaneous inversion
Even though Simultaneous Inversion has been the ‘work-
horse’ seismic inversion tool for many years, there are some 
shortcomings that we will point out in this section:

Inadequate regularization
Equation (4a), used in deterministic simultaneous inver-
sion, suggests that the Ln(SI) / Ln(AI) relationship can be 
expressed as one straight line (same for (4b)). However, from 
Figure 1, where Ln(SI) for a typical dataset is cross-plotted 
as a function of Ln(AI), coloured by the volume of shale, 

form a block column vector called Ln(Z). The difference 
operation Δ, applied to each of Ln(AI), δLn(SI) and δLn(ρ), 
can be expressed as an almost diagonal matrix D. And lastly 
the convolution can be expressed by a banded matrix W 
(typically a different W matrix per partial angle stack). The 
product of W and D we can call system matrix J, into which 
the scaling parameters a, b and c (and the ½ factor) can be 
subsumed. Subsequently a block system matrix J is formed 
from system matrices J, so that equation (5) in block matrix 
form reduces to

S = J • Ln(Z) (6)

Where:
n	 S is also a block column vector of the near, mid, far etc 

seismic traces stacked on top of one another.

Equation (6) is the essence of many continuous simultaneous 
inversion methodologies (although there are other implemen-
tations). To obtain Ln(Z), from which Z can be obtained by 
exponentiation, you either need to perform matrix inversion 
(quite expensive as the system matrix J can be large; the fact 
that J is typically singular exacerbates this) or you plug in 
a starting model of Z (which we label Zo), take the natural 
logarithm, multiply by J from the left, and for each partial 
angle stack incidence angle θ compare the synthetic seismic 
Spp(θ) so obtained with the real seismic Sreal(θ). Then use some 
optimization apparatus (e.g. the conjugate gradient method, 
or least squares optimization) to iteratively change Z until 
the difference between Spp(θ) and Sreal(θ) is minimized for all 
partial angle stack incidence angles θ.

So the optimization consists of minimizing an objective 
function, typically ||Sreal - X • Ln(Z)||2, by judiciously changing 
Ln(Z). Even though in (4a) and (4b) we introduced a form of 
regularization, using this objective function is still unstable in 
practice, so we need to add a second level of regularization 
in the form of another, second term in the objective function 
to ensure that the impedances do not drift away too much 
from the initial impedances Zo. The total objective function 
to be minimized is then something like ||Sreal - X • Ln(Z)||2 
+ μ||Ln(Z) - Ln(Zo)||2, where μ, the so-called model weight, 
should be as small as possible to ensure the inversion is 
driven mostly by the data (i.e. the seismic Sreal), and as little as 
possible by the initial model (Zo). Note that in this case the 
objective function is quadratic, which makes optimization 
straightforward. Sometimes L1 norms are used for the second 
term, making optimization somewhat more difficult.

Statistical method
Clearly, simultaneous inversion can be seen as a statistical 
problem, given the noise component of the seismic signal, 
uncertainty in rock properties etc. Realising this, the seismic 
inversion can be recast as a Bayesian problem, in which the 
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tion in between? You would really need to know NtG at that 
location, and of course you do not know that beforehand 
(determining the NtG may be one of the reasons why you 
want to perform seismic inversion in the first place). Ideally, 
we would like to have a way of interpolating well derived 
impedance information in a manner that does not depend 
on NtG. The way to do so is to interpolate the impedance 
data per facies. In, for instance, a binary sand/shale sequence, 
the sand and shale depth trends individually are quite well 
constrained from well data, and these can then be readily 
interpolated to unknown locations. Importantly, knowledge 
of NtG is now not a requirement.

Physics not properly captured
In Figure 2, we make an AI ‘truth’ model in black (also SI and 
Rho, not shown), we synthesize the seismic (only the zero 
incidence synthetic is shown at the right) and then perform 
a simultaneous inversion back to AI in red (and SI and Rho, 
not shown), using the dashed line as the AI LFBM. Note 
that the biggest loops in the synthetic are where we switch 
between the facies (think of this problem as for instance a 
Shale/Sand/Shale sequence), and also note that simultaneous 
inversion only gives credible results near these facies switch-
es; away from these facies switches, the AI result trends back 
to the LFBM, as indicated by the arrows.

Clearly the facies, which can be seen as discrete quantities, 
have a major control on the seismic expression, but these are 
not inverted for in standard simultaneous inversion. So ideally 
we would like to invert for these (discrete) facies also, as well 
as of course for the (continuous) impedance per facies. Only 
if we invert for both can the physics be captured properly.

it should be clear to any rock physicist that three lines are 
required, two through the blue sand prone data cloud (water 
bearing and hydrocarbon bearing sands), and one through 
the orange shale prone data points. One line clearly does not 
suffice. So ideally we would like to see Rock Physics relation-
ships per facies.

Regularization in the Bayesian form of simultaneous 
inversion is provided more elegantly and (in many cases) 
more accurately compared to the deterministic approach by 
use of the prior information – equation (8). However, these 
priors are derived as linear trends of AI (in case of Fatti) 
with TWT, and it is unlikely that this represents the AI low 
frequency behaviour adequately. In fact, such a linear depth 
trend may only represent frequencies from 0 to, say, 2 Hz, 
and if the seismic to be inverted contains frequencies from, 
say, 5 Hz onwards, there will be a frequency deficiency in the 
inverted impedances from 2 to 5 Hz in this example. If the 
phenomena to be studied are outside this frequency range, 
then this may not be an issue, but it is clearly worth checking 
beforehand. Ideally, of course, we would like to use prior 
regularization that is not frequency deficient.

Inadequate low frequency background model  
(LFBM) building
Although more advanced ways of building LFBM’s have 
been published (Sams and Saussus, 2013; Douma and 
Naeini, 2014), the most popular route is to interpolate low-
pass filtered impedance profiles derived at the wells. The 
challenge is that if you have, say, a high Net-to-Gross (NtG) 
well in the West and a low NtG well in the East, how would 
you interpolate a credible LFBM impedance profile at a loca-

Figure  1 Ln(SI) / Ln(AI) cross-plot, colour coded 
by Vshale.
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The likelihood function L(Sreal|Z) is the same as (9), and the 
prior distribution p(Z|F) is very similar to (8), the only dif-
ference being that the prior mean Zo and covariance matrix 
Cp now depends on facies F:

p(Z|F) = exp{-½(Z - Zo(F))T Cp(F)-1 (Z - Zo(F))} / |Cp(F)|½ (11)

This facies-dependent prior distribution can be obtained 
from depth trends of AI and cross-plots between AI vs. SI 
and AI vs. ρ (in case of Fatti), complete with an assessment 
of uncertainty: these are typically derived from well data 
but could come from simple 1D basin modelling or from an 
analogues dataset. The difference with section 1 is that now 
we develop these depth trends and cross-plots per facies. This 
is a crucial improvement.

That leaves p(F), the facies prior distribution. For this we 
use a discrete Markov Random Field. Expressed simply, any 
3D seismic lattice consists of many pixels. We define a set 
of pixel-pairs connecting each pixel to its direct neighbours 
within in the inversion window. So each pixel belongs to six 
pixel-pairs (except at edges, corners). The probability of a 
configuration Fc of the whole lattice is then defined by the 
sum of potential energies over all the pixel-pairs in what is 
called a Gibbs distribution:

p(F) ≈ exp(-∑Vp(Fp)) (12)

Where
n	 Vp represents the ‘potential energy’ of the set of facies Fp 

seen by each pixel-pair c.

For each clique, we can write the potential energy as Vp = β 
I(Fcentre, Fneighbour) where the discrete indicator function I is 0 if 
facies Fcentre and Fneighbour are the same and is 1 if they are not, 
and where β is a positive continuity parameter. So we can 
rewrite (12) as ...

p(F) ≈ exp(-∑ β I(F1,F2)) (13)

... and thus we penalize (reduce) the probability p(F) any 
time two neighbouring facies are different.

We have implemented different β›s for horizontal (inline 
and crossline direction) and vertical continuity, as geo-
logically horizontal continuity is typically larger than in the 
vertical direction. However, as geology is seldom perfectly 
horizontal, we use the concept of chronostratigraphic age 
(Gawith et al., 2013) to determine neighbours of the same 
age, which may not be simply the neighbouring pixel at the 
same time index.

Note that the Markov Random Field also allows us to 
prohibit illegal facies combinations, i.e. we can ensure that 
we never obtain water-bearing sand on top of gas-bearing 
sand for instance. Also, note that this technique is different 

Joint categorical/continuous simultaneous inversion
In the previous section we have learnt that, ideally, to capture 
the physics of the seismic inverse problem properly, we invert 
to facies and impedances per facies, and that per facies Rock 
Physics Models and LFBM’s should be used.

To do so is mathematically demanding, as it cannot be 
written down in closed form (such as (6) above), nor can it 
be solved using standard optimization apparatus. We use an 
iterative method where we first invert the seismic for facies 
(given a bland impedance model), then given these facies we 
invert the seismic for impedances, then given these impedances 
we invert the seismic for facies and so forth, until convergence. 
This optimization is a form of Expectation-Maximization 
(McLaughlan, 2000): in the Expectation step we invert the seis-
mic for facies given the impedances, and in the Maximization 
step we invert the seismic for impedances given the facies.

Again using Bayes’ theorem, the posterior distribution 
equivalent of (7) is now more complex

π(Z,F|Sreal) ≈ L(Sreal|Z) p(Z|F) p(F) (10)

Figure 2 A synthetic AI model (black) with corresponding synthetic and simul-
taneously inverted AI profile (red). See text for details.
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Case study
We apply both conventional simultaneous inversion and Ji-Fi 
to a Triassic oil and gas field offshore Western Australia. 
We have defined 4 facies to invert for (Shale, Wtr Sand, Oil 
Sand and Gas Sand) from five wells that penetrate this field. 
Near, mid and far partial angle stack cubes are available, 
properly pre-conditioned for seismic inversion (not shown). 
Representative wavelets for the three partial angle stacks 
are estimated from well ties using the White (1980) method, 
which includes a seismic noise estimate. To compare the Ji-Fi 
facies result against simultaneous inversion (which does not 
give a direct facies estimate), we have performed Bayesian 
classification to facies on the simultaneous inversion imped-
ances as a post-processing step.

In Figure  4 we show the one AI LFBM required for 
simultaneous inversion (left), as well as two of the four AI 
LFBM’s required for Ji-Fi. Even though multiple LFBM’s are 
required for Ji-Fi and only one for simultaneous inversion, 
it should be clear that deriving the multiple per facies Ji-Fi 
LFBMs is an easy-to-accomplish exercise, and that these 
LFBM’s do not suffer from the interpolation halos you see on 
the one simultaneous inversion LFBM (which was derived by 
well log interpolation).

In Figure 5 we show (top left) a horizon slice through 
the facies cube obtained from simultaneous inversion 
followed by Bayesian classification, and bottom left the 
equivalent horizon slice through the Ji-Fi facies cube. 
Seismic Net Pay determination can be a complex endeavour 
(see Connolly, 2007; Connolly and Kemper, 2007), but 
once you have facies cubes, determining the net sand is 
equivalent to simply counting, per trace (over the inversion 
window), the number of Wtr Sand, Oil Sand and Gas 
Sand occurrences, and this is displayed to the right of this 
figure  (top: simultaneous inversion followed by Bayesian 
classification; bottom: Ji-Fi). 

to geostatistical inversion to facies and impedances or rock 
properties (see e.g. Sams et al., 2011) in that no variography 
is used.

Again, the un-scaled posterior distribution can be derived 
using (10), from which we can derive the maximum 
a-posteriori (MAP) model of Z and F, or we can use McMC 
sampling to obtain marginal distributions of interest.

Note: Below Figure 1 we indicated that the regulariza-
tion of the Bayesian form of simultaneous inversion may 
lead to a frequency deficiency. Ji-Fi is clearly an expansion 
of the Bayesian form of simultaneous inversion (compare 
equation (10) to (7)), so could Ji-Fi suffer from this 
frequency deficiency also? The big difference between the 
two methods is that in the Bayesian form of simultaneous 
inversion you specify one linear trend of AI with Depth, 
whereas in Ji-Fi you specify two or more such trends (as in 
Ji-Fi you always invert to two or more facies). This means 
that within the inversion window the impedance results 
switch between the per facies trends, and this switching 
typically ensures that enough frequencies are injected to 
cover the frequencies from 0 Hz to the start of the seismic 
bandwidth.

Wedge model
We apply both conventional simultaneous inversion and 
Ji-Fi to a sand wedge model encased in a shale (Figure 3). 
The one LFBM used in simultaneous inversion has a Vp 
exactly in between the Vp of shale and the Vp of sand (i.e. 
is green against e.g. the colour bar of Figure  3 Top Left). 
The two LFBM’s used in Ji-Fi have the Vp of shale and the 
Vp of sand respectively (i.e. dark red and dark blue respec-
tively). Clearly, Ji-Fi gives a superior inversion result, but of 
course this is a conceptual model, so does not prove that 
Ji-Fi performs better on real data. We’ll examine this in the 
next section.

Figure  3 Top Left: a ‘truth model’ for Vp (Vs 
and ρ not shown in this collage). Bottom 
Left: the corresponding zero incidence seismic 
(mid and far stacks not shown). Top Right: 
the Vp result of simultaneously inverting the 
synthetic seismic. Bottom Right: the Vp result 
of Ji-Fi inverting the synthetic seismic (Ji-Fi 
additionally gives a facies image – not shown).
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1. We need to invert to facies and impedances per facies (to 
capture the physics correctly)

2. We need to use per facies LFBMs

In this paper we have introduced a new joint discrete/continu-
ous simultaneous inversion method which implements these 
two remedies, and which does not show unsightly artefacts of 
standard methods such as impedances tending to a non-geo-
logical value away from seismic energy, frequency deficiencies, 
or interpolation halos.

A particularly pleasing aspect of Ji-Fi is that well data is 
used in a ‘soft’ way only, making QC at the wells blind well 
QC by design.

Comparisons to a wedge model and to case studies 
(of which only one is shown in this paper; more will be 

In our opinion Ji-Fi gives a better inversion result, in that 
only Ji-Fi:
n	 Shows a proper match as regards hydrocarbon content  

to all wells,
n	 Images the channel as a nice, continuous feature,
n	 Finds water-bearing sands off structure (where you 

would expect them).

Note that in a future companion paper we shall present more 
case studies.

Conclusions
In-depth analysis of the present industry standard continu-
ous simultaneous inversion method highlighted some short-
comings, which require the following remedies:

Figure  5 Simultaneous inversion and Ji-Fi 
results on a Triassic oil and gas field offshore 
Western Australia. See text for details.

Figure 4 Left: the AI LFBM used for simultane-
ous inversion. Right: two of the four AI LFBM’s 
used for Ji-Fi (Top: Shale; Bottom: Wtr Sand; 
Oil Sand and Gas Sand not shown as they are 
very similar to WtrSand (shifted to lower AI 
values).
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