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ABSTRACT
Seismic reflection pre-stack angle gathers can be simultaneously inverted within a joint
facies and elastic inversion framework using a hierarchical Bayesian model of elastic
properties and categorical classes of rock and fluid properties. The Bayesian prior
implicitly supplies low frequency information via a set of multivariate compaction
trends for each rock and fluid type, combined with a Markov random field model of
lithotypes, which carries abundance and continuity preferences. For the likelihood,
we use a simultaneous, multi-angle, convolutional model, which quantifies the data
misfit probability using wavelets and noise levels inferred from well ties. Under Gaus-
sian likelihood and facies-conditional prior models, the posterior has simple analytic
form, and the maximum a-posteriori inversion problem boils down to a joint categor-
ical/continuous non-convex optimisation problem. To solve this, a set of alternative,
increasingly comprehensive optimisation strategies is described: (i) an expectation–
maximisation algorithm using belief propagation, (ii) a globalisation of method (i)
using homotopy, and (iii) a discrete space approach using simulated annealing. We
find that good-quality inversion results depend on both sensible, elastically separa-
ble facies definitions, modest resolution ambitions, reasonably firm abundance and
continuity parameters in the Markov random field, and suitable choice of algorithm.
We suggest usually two to three, perhaps four, unknown facies per sample, and usage
of the more expensive methods (homotopy or annealing) when the rock types are
not strongly distinguished in acoustic impedance. Demonstrations of the technique
on pre-stack depth-migrated field data from the Exmouth basin show promising
agreements with lithological well data, including prediction accuracy improvements
of 24% in vp/vs and twofold in density, in comparison to a standard simultaneous
inversion. Much clearer and extensive recovery of the thin Pyxis gas field was evident
using stronger coupling in the Markov random field model and use of the homotopy
or annealing algorithms.

Key words: Inverse problem, Inversion, Reservoir geophysics, EM algorithm, AVO,
Facies, Bayesian, belief propagation, Markov random field.

INTRODUCTION

The oil and gas business has traditionally used an in-
dustrialised seismic workflow that consists of distinct,

∗E-mail: James.Gunning@csiro.au

commoditised steps of acquisition, processing, velocity model
building, migration, and in recent decades quantitative
interpretation (QI). This reflects a natural characteristic
of the seismic inverse problem under standard acquisition,
where low-frequency kinematic character (up to ≈ 2 Hz) is
used to inform coarse but “stable” velocity models, and the
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mid/higher frequency character (> 10 Hz) is used to image
bandpassed (but “stable”) reflectivity. Usually, these imaging
schemes have academic lineage to a scale-splitting assumption
and a Born-like scattering model (Bleistein, Cohen and
Stockwell 2001). For the migration to bandpass reflectivity,
the Born approximation leads to linear models and convex
optimisation, which is independent of starting models, and
largely independent of any prior model information. Up to
the QI step, the aim has been to ensure that each process
produces stable outputs from its inputs (like most commodity
sequential workflows) and avoids making predictions with
significant model dependencies other than those derived
directly from the acquired data.

This industrial workflow is a natural consequence of the
missing, typically 2−10 Hz, frequency gap in conventional
imaging: since the full inverse problem has a near null-space
in this frequency gap, it makes most sense to try and image to
a projected space, which is orthogonal in some sense to it, and
“bandpass reflectivity” meets this requirement. Despite much
hard work by the broadband community, there are strong
physical constraints that apply on the acquisitional side, such
as the low-frequency airgun response (Long and Reiser 2014),
operational limits on long offset design, and the diminish-
ing natural earth reflectivity at low frequencies (Walden and
Hosken 1985), that suggest that weak or challenging signal-
to-noise ratios over this missing gap are likely to remain a
constant challenge in imaging. There are exciting new de-
velopments in ultralow vibrational sources (Dellinger et al.

2016), but it is not yet clear whether energy, environmen-
tal, or deployment constraints will make these sources a
commodity technology. Thus, even though high-end imaging
methods like full-wave inversion overcome the scale-splitting
and Born-approximation limitations of conventional migra-
tions (Virieux and Operto 2009), the challenges of miss-
ing spectral content and limited apertures from conventional
streamer acquisition remain.

We observe that the most common industrial practice is
for reservoir characterisation teams to work with “bandpass
reflectivity” images, so the issue of the missing frequency
gap is then effectively their “responsibility”; it is reasonable
to suggest that this arrangement may endure for some
time. Bandpass reflectivity images can be produced as true–
amplitude, where amplitude effects unrelated to those intrinsic
to the earth reflectivity have been removed. The migration
velocity and bandpass reflectivity produced by standard
workflows are then maximum–likelihood inferences under
a suitable misfit model. The imaged amplitudes can then be
regarded as “data” in a downstream amplitude-versus-offset

(AVO) inversion workflow, where the forward model can
now be approximated as a 1D convolutional problem with
a wavelet that can be estimated from well ties (Gunning
and Glinsky 2006). Under this approximation, which we
maintain in the rest of this paper, 3D ray-propagation effects
are assumed to have been effectively removed. The well tie
provides misfit noise estimates which approximately embed
the adequacy of this model.

Depending on your definition of “signal”, the S:N ratios
commonly observed at well ties based on the convolutional
model may be around 2 to 4, and better than 10 is very rare.
This makes the power-band of useful amplitude data often
rather smaller than the spectral width which is sought in
inversions. The missing spectral data are commonly supplied
by an explicit model preference statement, usually as a low-
frequency velocity/density model, and often stated as a
regularisation term. We prefer to write this regularisation as a
Bayesian prior, since Bayesian frameworks have a rich capac-
ity for incorporating other kinds of data about velocities, e.g.,
regional models or well-logs, in a way that is conceptually
separated from the seismic data. In many cases, the low-
frequency background model is stated as a l2 regularisation
term, which corresponds to a Gaussian prior distribution.

The construction of this prior model of low-frequency
velocity has become one of the major—and problematic—
tasks in AVO-style inversion. Where there are abundant and
stratigraphically correlatable well data, in clastic systems for
example, the model is usually constructed from some kriged
low-frequency weighted average of, for example, shale and
“reservoir” velocities. However, most models do not enjoy
such stratigraphic clarity, and spatially smoothed interpola-
tions of net-to-gross are difficult and controversial models to
build. What is usually much less difficult or contestable is the
building of spatial and compaction models for individual rock
types produced by log classification. In particular, non-seismic
sources of information for shear velocity and density are cru-
cial for making the connection to reflectivity. Sometimes, these
compaction trends may be successfully applied over very sig-
nificant lateral distances, reflecting perhaps the ubiquity of
the typical rock textures and mineralogy within basins.

Most seismic energy comes from transitions between fa-
cies types, and low frequency models are typically a heavily
smoothed approximation to the blocky facies character of well
logs. Without facies parameters, the prior model has to form
a kind of Gaussian covering “umbrella” over all facies types,
which means that posterior inferences may generate predic-
tions in transition regions corresponding to no existing rock
type in regions where clean facies may be expected. Especially
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away from seismic reflection events, these standard inversions
tend to relax back to the background model quite quickly,
and this may easily correspond to some kind of “mongrel”
rock with respect to the desired mixture distribution. Pos-
terior samples drawn from a distribution formed from this
umbrella-prior model will certainly not capture the mixture
character typical of sedimentary formations. The absence of
mixture character follows from the mathematical fact that the
product of a Gaussian prior and a Gaussian likelihood forms a
Gaussian posterior, whereas mixtures have, in general, several
“humps”. This is most obvious at lower frequencies where the
near-zero amplitude information (flat likelihood) by definition
cannot force the Gaussian prior into a posterior mixture.

We hypothesise that a more geologically faithful way to
supply this low-frequency character is to explicitly model the
discrete or facies aspect of the subsurface and let a Bayesian
probabilistic model of spatial variation in facies type, com-
bined with compaction trends, implicitly supply the required
low-frequency information. Other groups have tried similar
models; for example, hierarchical discrete/continuous models
for seismic inversion have been used by Eidsvik et al. (2004),
Larsen et al. (2006), Ulvmoen and Omre (2010), Buland et al.

(2008), and Kolbjørnsen et al. (2016). Interestingly, for the
reasonably realistic examples discussed in Larsen et al. (2006)
and Ulvmoen and Omre (2010), at the attempted resolution,
the uncertainty in the posterior facies distribution does not
appear to be very great, despite the legitimate concerns over
this issue raised by Kolbjørnsen et al. (2016). This means that
a maximum aposteriori (MAP) inference for facies and rock
properties is likely to be very useful, furnishing a single “best
guess” model for prediction purposes.

This paper describes an AVO inversion approach that
jointly inverts for elastic parameters and facies labels, us-
ing facies-dependent compaction models, an explicit spatial
probability model for facies, and with an emphasis on MAP
estimation for the resulting models (Kemper and Gunning,
2014). The spatial model has similarities to those in the ref-
erences cited above, but our computational approaches are
quite different. For example, the approximate marginals used
in Buland et al. (2008) are a good idea, but they only take
second-order spatial interactions into account—the scheme
we describe below has all higher order interactions. We aim
to confine the scope of this paper to the MAP estimation
problem, but the apparatus derived does give access to uncer-
tainties, and examination of these for typical test problems
with sensibly framed models and decent S:N ratios gener-
ally conveys the same impression about uncertainties observed
by Larsen et al. (2006) and Ulvmoen and Omre (2010).

The material below is organised as follows. In the The-
ory section, we introduce the model and its assumptions and
explain why the optimisation problem it introduces is very
challenging. Next, we describe a sequence of increasingly com-
prehensive algorithms for solving this optimisation problem,
trading quality against runtime and resources. A discussion of
practical issues and preparatory modelling work is offered in
a summary of the typical workflow. This is then illustrated by
a short synthetic study, then a field-data case using an Aus-
tralian offshore data set, followed by some recommendations
and conclusions in the usual way.

THEORY

We frame the inversion problem to solve for a suite of con-
tinuous rock properties m = {vp, vs, ρ} (P–velocity, S–velocity,
density) together with facies labels Fi ∈ L ≡ {0, 1 . . . , Nf − 1}
(e.g., shale, limestone, brine-sandstone, . . . ) at all the sample
locations i in the inversion volume (usually the xyt lattice de-
fined by the imaged seismic). The prior distribution of rock
properties P(m|F ) is a conditional joint distribution, depen-
dent on co-located facies labels, and is constructed from rock
physics regressions developed from regional log data. The fa-
cies labels are modelled with a Markov random field (MRF)
distribution P(F )(Winkler 2003), whose underlying connec-
tivity graph is aligned with the natural stratigraphy in the
inversion domain. Thus, given suitable AVO angle (θ ) stacks
y (multiple samples and angles), a forward model f(m), and
a suitable probability measure for the likelihood of the data
given the model, L(y|m) = L(y|f(m)), the joint posterior dis-
tribution of the model m and F can be written as

P(m,F |y) ∼ L(y|m)P(m|F )P(F ). (1)

The forward model f(m) is usually taken to be a sim-
ple convolutional model with reflectivities taken in either lin-
earised (m ≡ {log(ρvp), log(ρvs), log ρ}, (Fatti et al. 1994)) or
Zoeppritz (Aki and Richards 1980) form, consistent with the
angle stack and wavelet signatures and effective noise levels es-
timated from nearby well ties. Typically, for the Fatti approxi-
mation, this forward model may be written as y = f(m) = Xm
where the matrix X is a product of discrete time differentia-
tion, Fatti-like reflectivity coefficients, and wavelet convolu-
tion. In this case, X is the Jacobian or Frechet derivative and
has an unstable pseudo-inverse, which reflects both the fre-
quency content loss mentioned above, but also weak (O(θ2))
sensitivity to some projections of the model vector m, e.g.,
shear impedance, or density.
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For convenience, we choose the conditional priors to be
of multi-Gaussian form, i.e.,

P(m|F ) = N(m̄(F ), Cp(F )) ∼ exp
[− 1

2 (m − m̄(F ))T

× Cp
−1(F )(m − m̄(F )

]
/|Cp(F )|1/2, (2)

where m̄ and Cp are assembled to capture the rock physics
trends and regressions for each rock type. We use a primary
compaction model for vp as a function of depth or effective
stress, and vp as a primary predictor for vs and ρ as a regres-
sion structure. Specifically, for a known reference compaction
surface tref, the mean properties are defined for each facies
by a set of log-data-derived conditional regression models like
vp ∼ N(Ap + Bp(t − tref), σ

2
p ), vs |vp ∼ N(As + Bsvp, σ

2
s ), and

ρ|vp ∼ N(Aρ + Bρvρ, σ
2
ρ ), where the σ denotes regression er-

ror standard deviations. The suite of regression parameters
{Ap, Bp, As, Bs, Aρ, Bρ, σp, σs, σρ} in this model then defines
block entries in m̄(F ) and the covariance matrix Cp(F ) for
each sample t. For simplicity, we suppress notation for the
deterministic spatial dependence implicitly carried by t, tref,
and possible transverse variations in the regression constants.
The expected velocity increase with depth is thus implicitly
carried by m̄(F ), and Cp(F ) embeds, for example, the char-
acteristically strong correlation between vp and vs . This struc-
ture implies that the conditional prior is written as a product
over all lattice sites (“blocks”). The likelihood is also con-
veniently chosen to be of Gaussian form, which we write as
L(y|m) ∼ N(y − f(m), Cd) where Cd is a suitable noise covari-
ance matrix. The covariance of the residuals y − f(m) implic-
itly absorbs external noise and a range of modelling and imag-
ing errors.

The MRF for the facies labels is parameterised as an
unsymmetric “Potts” model

P(F ) ∼ exp

⎛
⎝−

∑
i

⎛
⎝1

2
ei,Fi

+
∑
j∼i

β
(Dij)

Fi ,F j
I(Fi �= F j )

⎞
⎠

⎞
⎠ , (3)

where i, j are sample/voxel locations, j ∼ i denotes voxel
neighbours j of i , I(·) is an 0/1 indicator function, the ei,l (l ∈
L) are pseudo-abundance parameters, and β = {β (Dij)

Fi ,F j
} are

parameters coupling the neighbours in stratigraphic direction
Dij (a direction sense associated with the neighbouring voxels
i, j : along-dip, vertical etc.). These β parameters are chosen
to promote continuity for “permissible” transitions and are
also used to preclude impermissible transitions, for example,
vertical juxtapositions of brine above oil in communicating
reservoir facies. For permissible transitions along stratigraphic
directions, the β parameters are typically fixed at values not
too far from the phase-transition of the equal-abundance case

(ei,l = 0) MRF, where the resultant spatial correlations of
“representative” models drawn from the prior distribution are
most geologically realistic: this is typically around β ≈ 0.7 in
2D or β ≈ 0.4 in 3D (Huang 1987). Prior proportions are en-
coded through the terms ei,l , which are automatically adjusted
in a calibration step such that the overall marginal distribu-
tion of each label, computed from equation (3), matches, vox-
elwise, a volume of geologist/interpreter-supplied marginal
prior-proportions pi,l . We assume henceforth that such a vol-
ume is available: its information content can be anything from
strongly informative to relatively agnostic.

The step of calibrating the pseudo-abundance energies
ei,l to the prior proportions pi,l is nontrivial: in the absence
of correlations in the facies model (all β = 0), the marginal
abundance pi,l = 〈I(Fi = l)〉 of facies l at pixel i relates to the
ei,l by the trivial relation pi,l = exp(−ei,l/2). In the presence
of correlations, the relationship is not analytically available,
although it is smooth. Numerically, it is well approximated by
the application of loopy Bayesian belief propagation (LBBP) to
the prior distribution (equation (3)) (Wainwright and Jordan
2008), which computation we may notate as 〈I(Fi = l)〉 =
Gil (β, {ei,l}). Since the LBBP calculation is fast, our setting of
the parameters ei,l is performed by solving the mini-inverse
matching problem:

{ei,l} = arg min
ei,l

∑
i,l

(pi,l − Gil (β, {ei,l}))2 (4)

for the ei,l , which usually matches the marginal proportions
within a percent or so. The details of this matching problem
are not central to what follows and outside the scope of this
paper. But the calibration step is important since the correlated
MRF behaves very differently to a simple uncorrelated model,
and the setting of the ei,l must take this into account: the
mutual consistency of the ei,l and β parameters is important
for the behaviour of the optimisation approaches below.

INVERS ION

“Standard” inversion can now be regarded, statistically, as a
model “point-estimate” obtained by maximising the posterior
probability (equation (1)). This is equivalent to minimising,
jointly with respect to m and F , the log-posterior energy:

E(m,F ) = (y − f(m))TCd
−1 (y − f(m))

+(m − m̄(F ))TCp
−1(F ) (m − m̄(F )) + log |Cp(F )|

+
∑

i

⎛
⎝ei,Fi

+
∑
j∼i

2βFi ,F j
I(Fi �= F j )

⎞
⎠ . (5)
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In its general form, this optimisation problem is very chal-
lenging, as it is non-convex with respect to most “neighbour”
definitions in the labelling space, although it is convex in m for
any fixed labelling (though perhaps, weakly non-convex for
the Zoeppritz model at large angles). It belongs to the class of
NP-hard optimisation problems for which guaranteed exact
solutions are not available from algorithms that scale accept-
ably with the dimension of the model. Among a large number
of approaches we have tried, the most successful are described
below, and the three methods we outline correspond to in-
creasing resource requirements and globality claims. These
should be regarded as a set of alternative approaches trading
off solution time versus quality. The first is a local optimi-
sation strategy based on the expectation-maximisation (EM)
algorithm, the second, a globalised version of the first using a
graduation strategy and the last, a fully globalised approach
based on annealing.

(i) EM algorithm. The local optimisation strategy we have
found to be most efficacious is a form of EM algorithm,
where, alternately, the labels F are estimated in an expec-
tation “E-step”, and the rock properties m then estimated in
a maximisation “M-step”, repeatedly until convergence. In
the E-step, we form the F -expectation of the log-posterior
with the properties m taken as fixed (“current values”). This
is most simple to see in the case that the prior covariance
factors over voxels, in which case it is essentially of the form
E(F ) = ∑

i (uFi
+ ∑

j∼i βFi ,F j
I(Fi �= F j )), which is a standard

“pairwise graphical model”, whose marginal probabilities
zil = 〈I(Fi = l)〉 (l ∈ L) are estimated by loopy belief propaga-
tion (Wainwright and Jordan 2008). These marginal probabil-
ities can then be regarded as soft estimates of the labels F . This
algorithm both scales with the system size and parallelises over
traces. In the M-step, these (current) marginal probabilities
(“memberships”) are fixed, and we minimise a membership-
reweighted objective with respect to the elastic parameters
m. In the simple case above, this ends up as a reweighted
least-squares objective Q(m) = (y − f(m))TCd

−1(y − f(m)) +∑
il zil (mi − m̄i )

TCp
−1(l)(ml − m̄l ). The latter is easily solved

with a modified LSQR algorithm (Paige and Saunders 1982)
and again scales well with the system size and enjoys paral-
lelisability. Of a variety of local optimisation approaches, this
method, combined with some step-length limiting on member-
ship changes, has been observed to exhibit the widest basin of
attraction around high-quality optima (Gunning and Kemper
2012). The starting configuration we use comprises setting ini-
tial memberships guesses from the supplied prior proportions
and commencing with an M-step. EM algorithms produce

parameter estimates at the mode of the marginal distribu-
tion obtained by integrating/summing out the discrete vari-
ables. As a surrogate for the MAP point, we form a pointwise
facies-label estimate by greedy Bayesian classification of the
final memberships zil . The compute requirements here are
typically 10–50 times those of simple classical least-squares
inversion.
(ii) Homotopy. Given an efficient local method, non-convex
problems usually benefit from some kind of graduation or
homotopy apparatus to increase the probability of finding
global optima from arbitrary starting points. In these gradu-
ation strategies, the objective function is gradually deformed
from a suitable convex approximation of the original problem
towards the original non-convex objective. The current local
optimum is used as a starting point for the next problem in the
graduation sequence. Since the non-convexity originates in the
mixture distribution P(m|F ) used to model the rock physics,
we define the homotopy schedule by gradually peeling this
mixture away from a common distribution in the central part
of the elastic parameter space. Specifically, for a schedule of
values λ = 0,�λ, . . . 1, the facies means of the mixture (equa-
tion (2)) are mapped to m̄′

l = λm̄l + (1 − λ)m̄∗, where m̄∗ is
a prior facies-probability-weighted average of {m̄l}. A similar
graduation sequence is used for the covariances Cp(l). The
inner local optimisation routine here is the EM algorithm of
item (i). The resource requirements here are usually 5–10 times
that for the EM algorithm.
(iii) Global annealing. Here, we use a reasonable approx-
imation of the prior rock physics model that leads to a
more manageable purely discrete global optimisation prob-
lem. We approximate the covariances Cp(l) by a common
prior dispersion Cp (a prior–proportions weighted average),
use the fully linear (Fatti) forward model f(m) = Xm, and set
the means by a selection matrix Z, such that m̄ = ZF̃ , where
F̃ is a binary-indicator equivalent representation of F . The
minimum of equation (5) in the subspace of m is available
analytically and can be substituted back in to the same equa-
tion to leave a discrete objective function in the F̃–space that
is quadratic in the term m̄(F̃ ). This can be simplified in gen-
eral to a constrained binary/integer quadratic programming
(BQP/IQP) problem for F̃ with objective E(F̃ ) = F̃T

QF̃ , for
a huge but sparse matrix Q. A very attractive property of
this result is that precisely the same objective function holds
also for the marginal distribution of F̃ , i.e., where all the
uncertainty from the elastic parameters has been integrated
out. Further, the matrix Q has modest density in the ver-
tical indexing direction corresponding to de-convolution, but
there are only sparse fringes in the x, y stratigraphic directions
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originating in the MRF. About half the entries are positive,
expressing anti-correlation, and yield a property known as
non-submodularity in discrete optimisation (Wainwright and
Jordan 2008), which means the minimisation problem is NP-
hard. In some IQP problems where Q has only a very narrow
bandwidth k of nonzero entries, solutions are possible using
dynamic programming (Rimstad 2012), but the complexity
scales like Nk+1

f . The typical number of samples in wavelets
(k > 8, say), plus the fringes from the MRF, means that this
idea is not practicable. The upshot of this is that the IQP form
of the optimisation problem is most practically solved using a
highly customised simulated annealing scheme; our implemen-
tation is based on Katayama and Narihisa (2001) with many
enhancements for speed and parallelised. The resource needs
here are relatively heavy for memory and speed, since the lin-
ear algebra must be done in partially dense form to populate
the Q explicitly. The annealing schedule is implemented in a
typical geometric scheme, with the temperature lowered after
a full pixel sweep of random label-flip proposals. We find that
even with temperate cooling ratios as aggressive as 0.95, the
bulk of the labelling inference settles in fairly robustly, and the
total annealing time is comparable to the linear-algebra setup
time. High-quality global optima are best generated with more
cautious annealing rates (e.g., 0.995), so compute times will
grow accordingly. This method has been validated by com-
parison runs with solutions using exact binary optimisation
methods, on small problems where the latter option is feasible.
A final benefit of the annealing scheme is that, since the theory
of Markov Chain Monte Carlo (MCMC) is intimately con-
nected with that of simulated annealing, approximate samples
from the Bayesian posterior can be generated by arresting the
annealing at temperature of T = 1, drawing a sample, then
melting and re–annealing repeatedly. Though expensive, such
a scheme ensures multiple modes are visited in sampling, in
contrast to the strong tendency of cheap MCMC proposal
schemes to get trapped in local minima.

The choice of algorithm for practical use depends on re-
source availability and the size of the inversion to be per-
formed. It also depends on the level of difficulty or ambitious-
ness of the model. Keeping the level of ambitiousness in the
model realistic is important. An old and reliable rule in dis-
crete optimization is the principle of breaking of symmetries.
In the context of discrete facies inversion this means formu-
lating models such that label interchange near symmetries or
hidden effective media symmetries (e.g., laminated hard/soft
facies behaving as “intermediate”) operate as little as possible.
In the choice of the effective facies types and the resolution of
the model sought, these principles need to be kept in mind.

For example, it is clear that the inversion framework should
operate decently when facies distinctions are clear in acous-
tic impedance (AI) log data. Conversely, the odds of recovery
will be diminished when there is great overlap of AI charac-
ter caused by, e.g., diagenetic alteration of material. Judicious
choices of proportions and use of the MRF parameters to
promote spatial continuity can help break symmetries. The
cheapest algorithms tend to work well only if no near sym-
metries exist. For example, if the seismic is resampled and
recovery at resolution below the λ/4 Rayleigh limit is pur-
sued, the parameters in the MRF should break the symmetry
(e.g., by setting unequal prior proportions, enforcing density
ordering of fluids in permeable facies, etc . . . ). Amongst fa-
cies sequences for which the seismic likelihood is very flat,
the posterior preference (and implicit low frequency trend) is
strongly driven by the prior abundances. We do not recom-
mend working very far below the Rayleigh resolution limit,
simply because of the large combinatorial explosion of effec-
tive media assemblies that can occur sub-resolution and the
commensurate growth in model uncertainty.

In summary, we find that problems with two or three
facies that separate well in AI are often cleanly recovered us-
ing the cheapest option above, but the initial m guess has to
be not too far off since there are spurious secondary minima
into which the EM algorithm can be attracted. Use of the
prior-weighted mean as an initial guess seems to achieve this.
Separating facies along directions that have nearly constant
AI is usually rather more delicate, as it depends on weaker
information from the larger angle stacks. Such problems ben-
efit greatly from the globalisation strategies of methods 2 or
3. For about 10-fold the runtime, the homotopy algorithm
(equation (2)) offers about the best level of globality that can
be achieved with the modest memory resources required by
a local method. We recommend it as a basic workhorse. For
cases with more facies, especially those not well distinguished
in AI, the annealing method may be recommended if memory
resources are adequate: the overall runtime may then be an-
other 10-fold slower or so for respectable cooling rates like
0.99.

Inversion codes always make prediction errors, and the
foregoing material emphasises the importance of adequate op-
timisation in minimising these. However, predictive errors in
Bayesian inversion can occur for at least three reasons: (i) ex-
ternal noise in the data, over which no inversion scheme has
any real power if the noise overlays the signal in space and
spectral character: we discuss this briefly in the Workflow sec-
tion below; (ii) inadequacies in optimisation methodologies,
such as premature terminations in optimisation schemes, or
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Figure 1 Left, “truth” sand-shale model with seismic data corrupted by Gaussian noise, of RMS power σd relative to the peak signal of 1. Three
cases with σd = 0, 0.1, and 0.3 are shown. Under the Monte-Carlo experiment of recovering facies labels, using the rigorous IQP algorithm,
from multiples instances of noisy seismic traces, the misclassification rate as a function of noise level is shown on the right, rising steeply beyond
σd = 0.2.

trapping in local minima, as discussed above; and (iii) inade-
quacies in prior model formulations, such that even a noise-
free signal and perfect global optimisation produces incorrect
predictions. Researchers in computer vision who use MRFs
have observed that the last issue can sometimes be a dominant
consideration, since it is hard for natural scenes or geology to
be well modelled by simple first-order MRFs (Szeliski et al.

2006). It is thus sometimes the case that the extra effort re-
quired to achieve high-quality global optima via annealing will
not improve the prediction accuracy. The synthetic example
below illustrates the importance of point (ii) above, whereas
the field case illustrates aspects of points (i) and (iii).

WORKFLOW

The basic workflow requirements in setting up an inver-
sion comprise (i) wavelet and noise estimation from well ties
(wavelets enter the forward model f(m), and noise levels the
covariance Cd), (ii) rough (auto)picking of zonations and ba-
sic stratigraphic frameworks, and (iii) petrophysical log clas-
sification (to “effective elastic facies”) and derivation of per
facies compaction trends, relative to sensible reference sur-
faces. The latter step usually requires some sensible pooling
of facies types, as elastic inversions require some separabil-
ity of rock types in impedance space. The primary sensi-
tivity is of course to AI, and far-offsets yield increasing ca-
pacity to exploit vp/vs ratio contrast. Further, most regions
will have some known major horizons, where it is known
that particular facies only occur in related subzones, e.g.,

above a major epoch marker. This regional knowledge is rep-
resented in the prior-proportions {pil} specification, which
is set by geological judgement and automatically assembled
with respect to horizons in a simple workflow. Typically,
fixed proportions are declared for facies within a small num-
ber of subzones, with some graded transitions over a few
samples.

The prior proportions specification is usually generated,
such that only (say) three to four facies are possible at any
given depth. This is usually a sensible upper limit on the num-
ber of categories that can be distinguished by AI and vs/vp

ratio. The argument in support of this limit runs roughly
as follows. It is clear that even a perfect model and algo-
rithm will produce misclassifications if the level of external
noise is high enough. To illustrate this, a simple synthetic
Monte Carlo experiment to recover sand/shale labels from a
simple single-trace, two-facies model with a sand slab buried
in shale is depicted in Fig. 1. The Monte Carlo part entails
adding noise of matching spectrum to the truth-case data, of
RMS amplitude σd relative to a peak truth-case amplitude
of 1 (i.e. S:N= 1/σd). For the model, the MRF parameters
are set at equal proportions, with β = 0 (vertically), and a
rigorous (exact) inversion algorithm is used (i.e., the global
optimum of equation (5) is found). The average misclassifi-
cation rate, shown in Fig. 1, shows a steep rise at around
S:N= 5 (σd = 0.2), with obvious asymptotic limit of 0.5 for
random guessing. For more than two facies, the asymptotic
limit will increase, and one should expect even steeper deteri-
oration with noise, so three or four facies seems like a sensible
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Figure 2 Synthetic inversion model; effects of spatial coupling (β values) and EM (local) versus IQP (global) optimisation: global methods are
needed to find the marl.

pragmatic upper limit if the misclassification rate is expected
to be low at typical S:N ratios.

The depth-trend and rock physics curves are sim-
ply derived by guided semi-automatic regression routines
applied to upscaled log data on a per-facies basis; this
informs the modelling structure in the trend m̄(F ) and cor-
relation Cp(F ). Typically, given a reference depth/time sur-
face tref suitable for effective stress (e.g., the mudline or
“base Cretaceous”), this consists in fitting the free parame-
ters and regression errors in the set of fitting/regression mod-
els vp ∼ N(Ap + Bp(t − tref), σ

2
p ), vs |vp ∼ N(As + Bsvp, σ

2
s ),

ρ|vp ∼ N(Aρ + Bρvρ, σ
2
ρ ), where the σ are regression error

standard deviations. These parameters then define subblocks
of the covariance matrix Cp at each t, tref.

IL LUSTRATIV E SY N T H E T I C M ODE L

Before proceeding to the actual field example, we show here
some salient behavioural characteristic of the inversion on

synthetic data to illustrate some of the modelling and algo-
rithmic issues discussed in previous sections. The rock physics
characteristics of this model have modestly close similarities to
those of the following field data study. Our synthetic model
and study has inverse-crime characteristics and begins with
zero-noise cases, but this simplifies the presentation of the
salient issues. Figure 2(a) shows a synthetic 2D model with
facies for shale(0), marl (1), brine–sandstone (2), and gas (3),
with seismic data at 10◦, 40◦ used for inversion (Fig 2(b)).
The marginal pdfs of {vp, ρ} for each facies are shown as
sets of ellipses in Fig 3(b), for the top, mid, and bottom of
the model, with diagonal contours for AI. Figure 2(c) shows
an inversion with no spatial continuity imposed (βx,z = 0):
the MAP model here finds an effective-medium degeneracy in
the brine leg and settles on a salt-and-pepper like model. Im-
posing spatial continuity (βx,z = 0.4) in the EM inversion of
Fig. 2(d) breaks this symmetry and recovers the brine suc-
cessfully, but misses the marl: the impedance overlap between
marl and brine is significant, and the local optimisation finds a
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(a) IQP, no marl in prior model, βx,z = 0.4
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Figure 3 Synthetic inversion model; (a) and (b) illustrate the effect of omitting a facies (marl) from the model. See main text for explanation of
contours. The data points in (b) are final elastic values for a trace a little left of the fault. Insets (c) and (d) show the likely effects of noise on
facies recovery for this model.

brine solution. Figure 2(e) uses the global annealing approach
and manages to recover the marl as well. Figure 3(a) shows
an inversion where the marl is a “surprise facies” and omitted
in the prior: here, the inversion unsurprisingly classifies that
region of space as the facies with nearest required impedance
(here, brine), see Fig. 3(b). Though not shown, in this marl re-
gion, the brine impedance is pulled down. Figure 3(c) and (d)
show representative likely effects of noise on the recovery—
here the seismic is contaminated by correlated, bandlimited
noise of RMS reflectivity about 0.01. The general recovery
is quite good, but thinner bodies are rather vulnerable to the
noise.

AUSTRALIAN NOR T H –WE ST S H ELF
EXAMPLE

Here, we show a practical application of the joint facies and
rock properties inversion to highlight some of the features
of the different solution algorithms and to compare with
a standard deterministic, model-based simultaneous inver-
sion. The inversions were applied to pre-stack depth-migrated
(PSDM) images (courtesy of Searcher Seismic and Spectrum

Multi–Client), shot in the Exmouth basin near the Pluto and
Wheatstone Fields (Sams et al. 2016). Well ties were per-
formed at nearby Bellatrix–1 and Urania–1 wells, possessing
a complete set of elastic logs, and a total of four wells were
used to help define facies models. Wavelets were estimated
using the parametric constant-phase approach of Naeini,
Gunning and White (2017). The facies model comprised
a transition from marls above the upper Jurassic to sand-
stones below this, with shales, sands, siltstones, and lime-
stones present over the section. In the following examples, the
focus is on the clastic section, with the marl section above act-
ing as a short lead in. The facies model was simplified to six
classes: shale, limestone, two types of marl, brine–sandstone,
and gas–sandstone, with the variability of elastic properties
within these effective facies shown in Fig. 4. The regression
curves underlying this figure are built relative to the (near)
base-Cretaceous K horizon picked in the seismic and dis-
played as a thick line in the section displays of Fig. 5. These
data are spread over a range of depths, so the true separa-
bility of facies at a given depth is greater than superficially
apparent in Fig. 4. In terms of AVO response, the gas–sands
are relatively bright, roughly doubling the expected reflection
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Figure 4 Variability of key elastic parameters in
chosen simplified geological facies. The regression
curves for each rock type follow from the statistical
model in the main text. The ellipses show “one stan-
dard deviation” uncertainties in the marginal prior
distribution of {ρvp, vp/vs} at a shallow, middle,
and deeper position in the inversion window.

coefficient against shale compared with brine–sand. These co-
efficients vary from about −0.04 to −0.18 from the shallower
to deeper part of the inversion zone, a range over which the
linearised (Fatti) reflectivity approximation is very good. An-
gle stacks at 12◦, 22◦, 32◦ and 42◦ degrees were used, with
RMS–signal:RMS–noise ratios estimated from the well ties to
be around 3:1. In the following tests, the input parameters
remain the same unless otherwise indicated and were selected
to optimise the results at the wells based on the homotopy
algorithm. Improvements to all predictions are possible by
further refinement of the prior information by interpretation
of more stratigraphic intervals. The noise levels for each of
the wavelets, as per estimates from well ties, are set to 20%,
25%, 30%, and 30%. Priors are assigned separately to the
intervals above and below the K horizon (see Table 1) and
are then smoothed across the K–horizon using an 11-sample
moving-average filter. Figure 5(a) shows the facies prediction
from the application of the EM algorithm with minimal beta
values (βxy = 0.1, βz = 0.05), and Fig. 5(b) shows the same al-
gorithm but with beta factors increased (βxy = 0.2, βz = 0.1)
to enhance the 3D continuity of the facies predictions. In this
case, the continuity is imposed with respect to the K hori-
zon only. The degree of continuity is improved, and some

blockiness has been removed. The result of homotopy is
shown in Fig. 5(c). Further improvement in continuity can
be observed and, in particular for very thin sands. There is
an increase in the amount of gas-sand predicted. It is worth
noting in particular the prediction of a thin gas-sand just be-
low the K–horizon to the right of the Pluto well, which is
the recently discovered Pyxis field. There are hints of gas at
this location from the EM algorithm, but the homotopy algo-
rithm is better suited to separating gas-sands from brine sands
and shales when the starting model lies between the shale and
brine sand. The IQP algorithm shows a slightly more exten-
sive gas-sand at this location with gas predicted all the way up
dip as the sand thins (Fig. 5(d)). The homotopy result shows
a switch to brine up dip, which seems possible only if there is
some barrier present but unresolved from the seismic. Inter-
estingly, despite the differing morphological character of the
inversion results produced by these three inversion schemes,
the prediction success rate at the wells is relatively constant
at ≈ 66%. This seems about commensurate with the noise
levels and impedance separability in the cluster plots. By com-
parison, a basic simultaneous inversion with greedy posterior
classification direct from the mixture distribution generates
prediction success rates of ≈ 60%.
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Figure 5 Facies predicted along an arbitrary line through the wells from various algorithms (a) EM with minimal betas, (b) EM with moderate
betas, (c) homotopy, (d) IQP, and (e) model-based simultaneous inversion and polygon analysis.

Table 1 Prior probability model

Layer Shale Limestone
Soft
Marl Marl

Brine
sand Gas

above K 0 .4 .4 .2 0 0
below K .59 .1 0 0 .3 .01

As described earlier, the EM algorithm begins with an
M–step whose starting point is a weighted trend based on the
assigned priors to each interval. For comparison, these initial
weighted trends are used as the background model for a stan-
dard simultaneous inversion, whose elastic inversion results
are classified deterministically through application of tailored
polygons to the absolute AI and vp/vs results, as shown in
Fig. 5(e); we denote this “standard simultaneous inversion”
as SSI henceforth. Algorithmically, this is closely related to
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terminating the EM algorithm after just one cycle, with addi-
tional parametric freedom allowed in the choice of polygonal
boundaries so as to maximise the correct classification rate at
calibration wells. The choice of polygon design is rather em-
pirical due to the lower quality of elastic property prediction
from the standard method. This can be observed in Fig. 6.
Figure 6(a) shows a cross-plot of the AI versus vp/vs for the
Urania well. The data are the measured log data re-sampled
to the seismic sampling of 2 ms, and coloured by the log in-
terpreted facies. Figure 6(b) shows the same plot using the
elastic properties and facies predicted from the homotopy al-
gorithm. The tight clustering along trends of the data points
for each predicted facies is apparent and consistent with the
input model. Figure 6(c) shows the elastic properties from the
SSI and the facies from the polygon analysis. The separation of
facies is apparently poor, and no gas sand is predicted despite
the empirical nature of the polygons. There are two main rea-
sons for this: the model-based inversion has poor constraints
on eliminating noise, and in order to achieve reasonable elastic
properties, the results are forced to sit close to a single, general
trend; there is no means to bridge the missing frequency gap
between the supplied trend and the lowest frequencies in the
seismic (the correlation between bandpass-filtered (BPF) well
logs and inversion results for the frequencies 1–2–4–8 Hz is
0.05 for vp/vs from SSI compared with 0.49 for homotopy).
The lack of consistency between the standard simultaneous
results and the expected distribution from the rock physics
suggests that application of a rock physics template for inter-
pretation of inversion results would not be appropriate with-
out adjustment for these limitations. In the current case, no
hydrocarbons are predicted as all known gas-sands lie closer
to the brine–sand properties. The use of well log interpolation
to provide the missing frequencies is unlikely to be successful
in many, if not most, situations (Sams and Carter 2017). The
empirical design of the interrelation polygons has been made
to optimise the facies predictions at the wells. Comparison
with the homotopy and IQP results suggests that the facies
predictions for the thicker sands is reasonable, though nois-
ier; the prediction of the thinner sands is very poor. Forcing
the polygons to predict gas at the lower level in the Ura-
nia well would result in too much gas throughout the whole
section.

The facies-based approach clearly has the capacity to pre-
dict within the frequency gap as indicated by the correlations.
This is illustrated further through the inversion results at two
wells: (i) Urania, one of the wells used to establish the rock
physics trends, and (ii) Guildford, which is a completely blind
test. The results are shown in the detailed Figs. 7 and 8.

Figure 6 Acoustic impedance versus vp/vs for the Urania well sam-
pled at 2-ms (a) measured data and log-interpreted facies (b) homo-
topy results and (c) model-based simultaneous inversion results and
polygon analysis.

The data are presented showing the predicted facies ver-
sus the log facies in the first two columns. The AI, vp/vs ,
and density are shown in three columns each: first, the pre-
dicted (red) log versus the measured log (black); second,
the predicted log (red) versus the trend for each of the fa-
cies where predicted (blue); and third, the BPF-predicted
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Figure 7 IQP inversion results at the calibration well Urania. Red logs are from the inversion, black logs are measured data, and blue logs show
the input-per-facies trends.

(red) and measured (black) logs (a {1, 2, 70, 80}Hz trape-
zoidal filter). The final panels in these images are the seis-
mic angle stacks, synthetics, and residuals from the inversion.
A numerical comparison of the prediction accuracy of the
joint categorical inversion versus SSI is shown in Table 2,
pooling the Urania, Pluto, and Guildford wells. The cross-
correlation coefficient of two quantities x1 and x2 is computed
as XCC = 〈x1x2〉/(x̄1,RMSx̄2,RMS), x̄RMS =

√
〈x2〉.

The presence of sharp contrasts at the boundaries
between facies provides information within a very broad
frequency range. The low frequency component below the
seismic bandwidth is therefore a result of the predicted
distribution of the facies and the trends within those facies.
The results at the validation well (Guildford) suggest a
number of limitations. First, the general AI trend is slightly
low in this well particularly in the mid-section. It is possible
that the choice of datum for the trends, chosen here as the K–
horizon is not correct. The K–horizon is close to a significant

unconformity, and this would place a question over whether
it is appropriate to use for a datum. Alternatively, there
may be a facies that is not captured by the calibration wells.
Obviously, this does not invalidate the method but is more of
a reflection of the application. Second, there is a mismatch in
the dynamic range of the bandpass AI in the deeper interval.
This might be a result of lateral or vertical variations in seis-
mic scaling not accounted for and may explain the increased
presence of limestone in the deeper section of the simultaneous
inversion result (Fig. 5(e)). It is worth noting that the quality
of the facies prediction at the wells is not necessarily a good
quality control of the inversion. For example, there are two
significant sands in the Urania well at 3300–3400 ms that are
not predicted by the inversion at the well. Observation of the
results on the cross-sections in Fig. 5 indicates that these two
sands are present but are not predicted to intercept the well.
This is thought to be due to data quality issues as the well lies
close to a fault and the seismic imaging might not be optimal.
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Figure 8 IQP inversion results at the validation well Guildford. Red logs are from the inversion, black logs are measured/synthesised data, and
blue logs show the input-per-facies trends. Note that no measure shear sonic data were available for this well and that the shear velocity log
was synthesised from a rock physics model.

Table 2 Prediction accuracy measures: XCC = correlation coeffi-
cient. AI(RMS) units are (m/s)(gm/cm3), ρ in gm/cm3. The joint inver-
sion yields a 24% increase in XCC for vp/vs and more than two-fold
for density

Quantity AI
AI
(BPF) vp/vs

vp/vs

(BPF) ρ ρ (BPF)

Joint inversion
XCC

0.78 0.56 0.67 0.38 0.44 0.42

SSI XCC 0.79 0.56 0.54 0.19 0.21 0.16
Joint inversion

RMS error
691.8 548.5 0.139 0.130 0.110 0.095

SSI RMS error 727.6 550.0 0.156 0.150 0.127 0.113

A final point of interest is the position of the well log data
on the prediction uncertainties available from the annealing
methods. Figure 9 shows an example of this at the two wells,
Pluto and Guildford, where the well data are painted over

the probability intensity images computed by sampling over a
small region of nine traces centred on the well. With the excep-
tion of a small number of locations, virtually all log data land
on significant probability locations. The exceptions may be
variously due to edge effects, upscaling classification effects,
or underestimation of systematic noise power associated with
modelling or imaging issues: the latter can often be crudely
compensated for by inflating the effective RMS variances in
the covariance matrix Cd.

This field study has highlighted a number of characteris-
tics anticipated earlier. Errors in prediction of facies and prop-
erties can be due to (i) external or imaging noise, including
wavelet calibrations and forward modelling approximations,
for example, the missing sands along a fault; (ii) inadequacies
in optimisation, for example the failure of the basic EM algo-
rithm to predict known gas where the more expensive algo-
rithms do; and (iii) mis-specification of the prior model, for ex-
ample, the mismatch in trends at the validation Guildford well.
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Figure 9 Prediction at Pluto and Guildford wells (9-trace slice centred on wells), showing pointwise marginal facies probabilities (on scale [0, 1])
for the six facies (in order: shale, limestone, soft–marl, marl, brine sand, gas), with well data overlaid (white values).

The moderate success of facies prediction at the wells with a
66% prediction success attests to these errors, and it is signif-
icant that a contrived interpretation of standard model-based
inversion results can achieve no better. The strong qualita-
tive match seen by placing the wells on the sections might also
suggest that further refinement of the well ties could markedly
improve the quantitative match. In addition, in terms of quan-
titative prediction, the proposed method has overcome the
limitations of supplying an inadequate prior low-frequency
model to bridge the missing frequency gap. The result of this
is that more stable estimates of both thin and thick layers have
been made. In this example, the homotopy algorithm would be
the most suitable given the very minor improvements achieved
through simulated annealing, and further improvements in the
predictions could be made through refinement of the input
model.

CONCLUSIONS

The inversion described in this paper is designed expressly to
promote consistency of petrophysical models through the in-
terpretation and inversion workflows. The hierarchical model
framework enables a tighter data integration and consis-
tent interpretation workflow, and the explicit facies model
makes integration with regional or analogue information eas-
ier. The hierarchical model framework provides a system-
atic and consistent way of addressing problems associated
with low-frequency model building: the “background model”

specification is a relatively simple assembly of per-facies com-
paction trends, global facies abundances declarations, and
specification of continuity via a small number of parameters.
We have implemented a comprehensive range of approaches
to the optimisation problem, ranging from local EM algo-
rithms, which perform well with reasonable initial guesses,
globalised methods via homotopy, and strict global methods,
which are starting-model independent. We expect that the hi-
erarchical framework described here will serve well not only
for standard AVO workflows but also for many other related
problems where facies are the key latent variables connecting
petrophysical variables and seismic responses.
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