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ABSTRACT
The seismic industry is increasingly acquiring broadband data in order to reap the
benefits of extra low- and high-frequency contents. At the low end, as the sharp low-
cut decay gets closer to zero frequency, it becomes harder for a well tie to estimate
the low-frequency response correctly. The fundamental difficulty is that well logs
are too short to allow accurate estimation of the long-period content of the data.
Three distinctive techniques, namely parametric constant phase, frequency-domain
least squares with multi-tapering, and Bayesian time domain with broadband priors,
are introduced in this paper to provide a robust solution to the wavelet estimation
problem for broadband seismic data. Each of these techniques has a different mathe-
matical foundation that would enable one to explore a wide range of solutions that
could be used on a case-by-case basis depending on the problem at hand. A case
study from the North West Shelf Australia is used to analyse the performance of
the proposed techniques. Cross-validation is proposed as a robust quality control
measure for evaluating well-tie applications. It is observed that when the seismic
data are carefully processed, then the constant phase approach would likely offer a
good solution. The frequency-domain method does not assume a constant phase. This
flexibility makes it prone to over-fitting when the phase is approximately constant.
Broadband priors for the time-domain least-squares method are found to perform
well in defining low-frequency side lobes to the wavelet.
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1 INTRODUCTI ON

The volumes of broadband seismic data acquired and pro-
cessed by the industry have grown rapidly. The spectral con-
tent of this new quality seismic data is demonstrably supe-
rior to conventional seismic data, both at the low and high
frequency ends of the spectrum. Although this technology de-
velopment started as an acquisition or processing dominated
phenomenon, there is also increasing emphasis on benefits for
quantitative interpretation (Reiser, Bird, and Whaley 2015;
Zabihi Naeini 2014). It is our understanding that the general
preference of seismic interpreters is to always use broadband
seismic data, unless there is a good reason not to. The motive is
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rather clear: by extending the low-frequency content, seismic
amplitude inversion, which is the building block of quanti-
tative interpretation, depends less on the background model,
the construction of which is still a subject of ongoing research.
An example is a recent approach to use the seismic image to
guide the interpolation of well-log data to build background
models (Zabihi Naeini and Hale 2015). Full-waveform inver-
sion is another important application that demands more low
frequencies (Baeten et al. 2013).

One could argue that the bottleneck for achieving a satis-
factory quantitative interpretation and subsequently reservoir
parameter estimation is the well tie, a process through which
the seismic wavelet is estimated (Walden and White1998;
Nielsen, Klem, and Cherrett 2015). The principles of making
a well tie are essentially the principles of system identification
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2 E. Z. Naeini, J. Gunning and R. White

adapted to the characteristic properties of seismic data and
well-log synthetic seismograms. It is not our intention to re-
peat these principles again, so we refer to a tutorial by White
and Simm (2003) that covers them in more detail. However,
broadband seismic data pose a challenge for well ties as the du-
ration of the well log is often inadequate to estimate the low-
frequency decay towards zero frequency (White and Zabihi
Naeini 2014).

The difficulty in estimating the low-frequency decay to-
wards zero frequency from a well tie originates in the limited
duration T of log data available for a well tie. The recipro-
cal (1/T) of this duration limits the spectral resolution avail-
able from making the tie. Since often only a short log length
is available, this introduces a severe limitation (�2 Hz for
500-ms log) in estimating a cut-off whose corner frequency
may be as low as 2 Hz. In practice, spectral estimates made
using this resolution will be very erratic, and some form of
averaging is needed to stabilise the estimates. The actual res-
olution is defined by the analysis bandwidth b introduced be-
low, where b is some small multiple of (1/T), and the product
bT is an averaging factor equal to the number of indepen-
dent spectral estimates entering the average. For a single well
tie, the only available means of averaging is over adjacent
frequencies, which renders it impossible to measure a 2-Hz
cut-off frequency. Further, there is a tradeoff between: (i) the
use of a small analysis bandwidth to avoid over-smoothing
the spectrum; and (ii) the need for a reasonable amount of
averaging in order to reduce estimation errors. To measure a
low-frequency decay from a well tie will inevitably produce an
unstable wavelet. There is no simple formula for selecting an
appropriate analysis bandwidth since it depends on the struc-
ture of the wavelet’s spectrum and the noisiness of the data
as well as on T. Fortunately, the minimum in the root-mean-
square wavelet error is fairly flat, and it is not difficult to select
a suitable analysis bandwidth (White 1984, Fig. 11). By com-
parison, the estimation of the power spectrum of the seismic
data is comparatively straightforward, is not limited by the
log length, and can be enhanced by use of larger volumes of
data.

The low-frequency decay of the amplitude spectrum is not
the only issue; direct estimation of the low-frequency phase
is also almost impossible. White and Zabihi Naeini (2014)
proposed a practical solution to this problem that effectively
consisted of: (i) estimating the wavelet using the available log
length; (ii) using multi-taper spectral analysis of the seismic
data over a long time window in order to estimate and modify
the low-frequency decay of the estimated wavelet accordingly;
and (iii) according to either the measured decay, or based on

the processing and acquisition information, modify the low-
frequency phase (see, for details, White and Zabihi Naeini
2014, 2015).

Although the proposed approach above was a good start,
it did not capture all of the possibilities and was very much
a frequency-domain solution. Like many other applications,
the well tie technique has to be adapted to the problem at
hand, and the challenge with broadband seismic data is to
find suitable ways around the lack of very long well logs. This
implies that there is not necessarily only one way to carry out
a well tie and that a variety of approaches has to be tested. In
what follows, we introduce three different algorithms: para-
metric constant phase, modified least squares in the frequency
domain (Walden and White 1998) with multi-tapering, and
modified least squares in the time domain using a Bayesian ap-
proach (Gunning and Glinsky 2006) with broadband priors.
As described later, these techniques have different mathemat-
ical foundations but share a common characteristic: a robust
solution with a better handle on the low-frequency content.

It is worth mentioning that, although broadband seismic
data also boost the high-frequency content, the resulting im-
pact on the well tie is more tractable. This is because the main
cause of error at high frequencies is the misalignment of the
seismic data and the well-log synthetic. Therefore, to mini-
mize the error on the high-frequency content, one requires
precise timing of the well-log synthetic and more kinemati-
cally precise imaging (i.e., more accurate seismic velocities).

2 WAVELET ESTIMATION METHODS

2.1 Parametric constant phase

As mentioned above, direct and accurate estimation of the
low-frequency phase is not possible from the well tie. A prag-
matic approach is to use a constant phase approximation over
the entire seismic bandwidth. This uses fewer degrees of free-
dom than estimating a phase spectrum and has some empirical
basis in that, after processing, the phase of seismic wavelets is
often approximately constant across the seismic bandwidth.
When only a short log length is available, this approach is
particularly suitable as, in practice, allowing the phase to vary
with frequency could be unreliable in such cases. If required,
one can modify the phase at the low frequencies towards zero
frequency using the approach proposed by White and Zabihi
Naeini (2014). In what follows, we describe our method of ob-
taining a constant phase wavelet by turning to the use of a long
time window, many traces, and multi-taper spectral smooth-
ing to estimate the low-frequency decay of the amplitude
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spectrum. We also discuss how to compute other parameters
such as lag and scale of the wavelet using the cross-covariance
estimates.

2.1.1 Amplitude spectrum

As for the wavelet amplitude spectrum, we use

|W ( f )| =
√

Ps ( f )
Pr ( f ) + c

, (1)

where Ps( f ) is the seismic power spectrum, Pr ( f ) is the re-
flectivity power spectrum, and c is a small whitening constant
(i.e., a small percentage of the maximum reflectivity ampli-
tude) for stabilisation.

Equation (1) obviously exhibits the need to compute
power spectra. A standard method of power spectral analysis
of a time series, such as a segment of seismic data, is to com-
pute the auto-correlation of the data segment, apply a taper
(lag window) to the auto-correlation, and Fourier transform
the tapered auto-correlation. An alternative approach simply
Fourier transforms the data segment and divides the squared
amplitude spectrum by the segment length to form the peri-
odogram; the periodogram is then smoothed with a spectral
window. The results are equivalent if the spectral window is
the Fourier transform of the lag window. The purpose of the
spectral smoothing is to reveal the underlying shape of the
spectrum of the data by reducing the sampling errors that
impart a very ragged appearance to the periodogram. The
lag window performs the same role by down-weighting and
excluding the random fluctuations of the auto-correlation at
longer lags.

An important property of a lag window is the analysis
bandwidth, or equivalent statistical bandwidth, b of its spec-
tral window, which is the effective bandwidth over which the
spectrum is smoothed (White 1984), and such smoothing re-
sults inevitably in bias. In fact, in power spectral analysis,
two types of bias should be considered: smoothing bias and
leakage bias. The former is a result of smoothing, and the
latter is a consequence of power leakage through the side
lobes of the spectral window from the nearby passband. The
Papoulis taper was designed to minimise the smoothing bias
(Papoulis 1973). However, at low frequencies, it is impor-
tant to minimise the spectral leakage too. Multi-taper spectral
analysis, proposed by Thomson (1982), is designed for this
task. It applies a set of orthogonal tapers to the data segment
and averages their periodograms. Thomson’s tapers are dis-
crete prolate spheroidal sequences. We found that for seismic
spectra the orthogonal tapers of Riedel and Sidorenko (1995)

perform better, with good protection against bias and leakage
simultaneously. We use these tapers throughout this paper.
An important factor to consider for multi-tapering is the num-
ber of tapers. According to Riedel and Sidorenko (1995), the
first n (n=2Tw-1) tapers are concentrated in the band [-w,w],
where T is the window length, and w is the half-bandwidth.
Thus 2w has a role similar to that of analysis bandwidth b

for lag windows (the nearest integer can be selected for non-
integer values). For example, if we have 1 s of data (T) and the
desired half-bandwidth is 2 Hz (w), then it is recommended
to use three tapers. We follow this rule when multi-tapers are
used.

The Papoulis window is not ideal for measuring Ps( f ) be-
cause it introduces leakage from the seismic bandwidth below
or above any sharp frequency cut-off. Pre-whitening filters are
also generally incapable of compensating the low-frequency
cut-offs considered here. Any pre-filter design, whether from
correlations or spectra, would not see the sharp cut-off that
is blurred by the truncation of its input data segments. Multi-
taper spectral analysis is specially designed to minimise spec-
tral leakage for data that have large variations in power be-
tween nearby frequencies. Our proposed strategy is therefore
to compute Ps( f ) in equation (1) using multi-tapering over a
long window and average over many traces around the well.
The combined effect of multi-tapering, long time window, and
averaging yields Ps( f ) with a much finer resolution (compared
with that of Pr ( f )), giving a better chance of estimating the
low-frequency cut-off. The averaging also helps to stabilise
the spectral estimates by smoothing over small-scale minor
fluctuations.

To compute Pr ( f ), we can only use whatever window
length the logs allow. However, reflectivity spectra are gen-
erally considered fairly smooth, generally increasing in power
from low to high frequencies, thereby producing a so-called
blue colouring. Consequently, their estimation does not need
a high-resolution method, and the tapered auto-correlation
method (e.g., Papoulis 1973) is well suited to producing a
smooth spectrum. The blue character of the well-log reflectiv-
ity would have minimal effect on the amplitude spectrum of
the wavelet at the very low frequencies.

2.1.2 Phase spectrum, time lag, and scale factor

The estimation of phase and time difference is a key part of
seismic data analysis and also, more generally, in other sig-
nal processing applications. As far as the subject of this paper
is concerned, the phase and time difference are determined
by tying synthetic seismograms to real seismic data at well
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locations. In the examples shown later, the synthetic seismo-
grams were constructed from calibrated sonic logs that con-
sequently determined their timing. No attempt was made to
adjust the timing in order to improve the fit to the seismic
data. When there is no check shot or vertical seismic profile
data available to calibrate the sonic log, or it comes from a
deviated well, the use of the well tie to determine or tune the
time–depth relation needs to be tightly constrained in order
to avoid any possibility of forcing a fit or, in the case of a
long well log, of confusing the time–depth relation with time
variation of the seismic wavelet.

Apart from timing and phase, and to complete the well-
tie story, a scale factor is also needed so that when the scaled
wavelet is convolved with the reflectivity, it generates a syn-
thetic seismogram that matches the amplitudes of the seismic
data.

The main requirement on the accuracy of these estimates
is that they should have minimum error, whether random
or systematic (bias). The principle of maximum likelihood
(Brandt 1976) yields estimates that asymptotically have min-
imum variance and are unbiased. Simulations demonstrate
that, for data having a fairly uniform signal-to-noise ratio
(S/N) across their frequency bandwidth, the accuracy of phase
and time shifts estimated as follows is close to the Cramer–
Rao bound, i.e., the limiting accuracy of maximum-likelihood
estimates (Brandt 1976). Let φsr,τ be the cross-correlation of
the seismic s and synthetic r , and ψsr,τ = HT[φsr,τ ] be the
Hilbert transform of the cross-correlation. Then, the envelope
of the cross-correlation is

Asr,τ =
√
φ2

sr,τ + ψ2
sr,τ , (2)

and its instantaneous phase is

θsr,τ = tan−1

(
ψsr,τ

φsr,τ

)
. (3)

The envelope peak is max(Asr,τ ). The time of the enve-
lope peak estimates the time difference between the signals
on the two recordings, and the instantaneous phase θsr,τ at
the envelope peak estimates the phase shift between them.
These can be incorporated into the seismic wavelet as time
and phase shift values. Furthermore, a least-squares scale fac-
tor can be computed as the magnitude of the envelope peak
divided by the peak of the auto-correlation of the synthetic
seismogram.

White and Simm (2003) emphasise the importance of
measuring the accuracy of the wavelet as well as goodness-
of-fit when tying synthetic seismogram to real seismic data.
Hamon and Hannon (1974) give a general equation for the

variance–covariance matrix of the maximum-likelihood phase
estimates from a parametric phase model. For a phase model
of the form 2π f τ + θ consisting of a constant time shift and
constant phase angle and assuming a fairly constant S/N over
the seismic bandwidth, we derive the following expressions
for the variances of time shift τ and phase θ :

variance {τ } = 3
π2 B2

(
R−2 − 1

)
2BT

, (4)

variance {θ} =
(
R−2 − 1

)
2BT

, (5)

where R is the magnitude of the peak of the cross-correlation
envelope (corresponding to spectral coherence), B is the seis-
mic bandwidth, and T is the time window length. The stan-
dard errors in time shift and phase of the wavelet are there-
fore the square roots of the variances in equations (4) and (5)
(see Appendix for the derivation of these equations). Inter-
estingly, it is evident from these equations that the accuracy
of the time and phase estimates depends on the bandwidth
of the data. Despite the fact that broadband seismic data in-
troduces some complexity at the low end of the spectrum, the
extra bandwidth helps reduce the error in time and phase shift
estimation.

2.2 Frequency-domain least squares

A routine least-squares best-fit well tie assumes that the syn-
thetic seismogram is error free. As a consequence, the best-fit
filter is not the seismic wavelet but the wavelet combined
with a Wiener filter for attenuating the noise in the synthetic.
The frequency-domain solution can be adapted to account
for errors in the synthetic seismogram as well as noise in the
data (Walden and White 1998). The frequency-domain ap-
proach also has the major advantage of providing diagnostics
of the accuracy of a well tie, such as error bars or confi-
dence bounds on the amplitude and phase spectrum of the
seismic wavelet (in fact, equations (4) and (5) can be inter-
preted as a special case of frequency independent variances).
We refer to White (1980) and Walden and White (1998) for a
comprehensive review of the frequency-domain least-squares
technique.

However, the basic requirement of the frequency-domain
least-squares solution is to compute the auto- and cross-
spectra. As mentioned in the previous section, the auto- and
cross-spectra can be computed as Fourier transforms of auto-
and cross-correlations or by auto- and cross-products of the
Fourier-transformed data segments.
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Figure 1 Well-tie plot at well 1 from using a constant phase wavelet. The well tie QC attributes are also shown. Overall, this figure shows a
very high quality well tie.

Our proposed method here is to use exactly the same
algorithm as in Walden and White (1998), but we modify
the auto- and cross-spectra calculation. While traditionally
Papoulis tapers (Papoulis 1973) are used to taper the auto- and
cross-correlation estimates and then to Fourier transform, we
propose the use of multi-tapering on data segments, Fourier
transform, and then compute the auto- and cross-spectra. The
advantage of using multi-tapers has already been described in
the previous section (i.e., to reduce the smoothing and leakage
bias) and here again we use tapers of Riedel and Sidorenko
(1995).

2.3 Time-domain Bayesian least squares

Gunning and Glinsky (2006) introduced a well-tie algorithm
formulated in the time domain as a Bayesian inverse prob-
lem. The algorithm simultaneously estimates all the wavelet
coefficients, and the Bayesian formulation allows one to in-
corporate uncertainties associated in the time–depth map-
ping, positioning errors, and other useful priors. Similarly,
the Bayesian approach provides tools for computation of full

posterior uncertainties of the model parameters. Gunning and
Glinsky (2006) also discuss the problem of wavelet length,
and treat this as a model dimension parameter that may
be estimated via Bayesian model selection theory (Denison
et al. 2002). The length is selected using the Bayesian model
evidence and is closely connected to the Bayesian informa-
tion criterion (BIC), which is a selection tool for choosing a
model from among a set of candidate models (Denison et al.

2002). The model evidence combats overfitting by reducing
the number of parameters in the model (in this case wavelet
coefficients), and this is very effective at suppressing noise in
the wavelet tails. The model evidence or BIC puts maximum
posterior probability on the simplest model that adequately
fits the data, thus behaving as a formal “Occam’s razor”
(Denison et al. 2002), i.e., the preference for a simple model
to a more complex one, other things being equal. We refer
to Gunning and Glinsky (2006) for more details on this tech-
nique. In what follows, we introduce two functionality en-
hancements in the form of priors that are specifically targeted
to handle the low-frequency character of the wavelet in this
algorithm.

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–20
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Figure 2 Wavelets estimated using the frequency-domain least-squares method at well 1 with (a) Papoulis tapering, (b) multi-tapering, and
(c) Papoulis modified by imposing the low-frequency amplitude decay of multi-taper wavelet and removing the unrealistic kink in the phase
spectrum at around 80 Hz.
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Figure 3 Well-tie plot at well 1 from Bayesian time-domain least-squares with auto-selection of the wavelet length.

2.3.1 Low-order polynomial decay

At very low frequencies, the log and hence the reflectivity data
do not have much influence on the wavelet spectrum because
of their blue (i.e., weakening) spectral character. The wavelet’s
low-frequency character is therefore most likely dominated
by the seismic data. The latter is a consequence of the low
cut of the instrumental response and any subsequent signa-
ture removal, zero phasing, Wiener shaping (e.g., shaping to
a band-limited zero-phase pulse), and Q-treatment (to com-
pensate absorption) that has occurred in the processing. This
low-frequency decay eliminates all DC power and yields a
low-order power-law decay for the wavelet spectrum of form
W( f ) ∼ f p+1, with possibly p = 0 or p = 1. This comes from
a simple power expansion of the Fourier transform represen-
tation of w (t),

W ( f ) =
T∫

−T

w (t) exp (−2π i f t) dt

=
T∫

−T

w (t) dt − 2π i f

T∫
−T

tw (t) dt − 4π2 f 2

T∫
−T

t2w (t) dt + · · ·

(6)

that facilitates the power-law decay to be implemented in the
time domain as wavelet-coefficient constraints in the form of

M∑
k=−N

aw,kk
l = 0, l = 0, . . . , p. (7)

These confine the set of wavelets to a subspace of re-
duced dimensionality. Each l index in equation (7) represents
an individual term in the right-hand side of equation (6), i.e.,
p = 0 suppresses the first term in equation (6), p = 1 the
first two terms, and so on. Here, there are N wavelet coeffi-
cients before zero lag (i.e., negative lags), and M coefficients
after zero lag (i.e., positive lags). For simplicity in implemen-
tation, these are imposed by remapping the Bayesian prior-
precision matrix (inverse covariance) for the wavelet coeffi-
cients in Cp = diag{σ 2

w} to C−1
p → C−1

p + λ2 XT
p Xp/σ

2
w, where

Xp is a matrix with rows representing the constraint equations
[(7), above] (Xp,lk = kl , l = 0, 1, . . . p, k = −N . . .M), λ is a
constant set just large enough to enforce the constraint tightly
(but not perfectly), and σw is the prior uncertainty in the
wavelet coefficients. This remapping confines the set of prior
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Figure 4 Well-tie plot at well 1 from Bayesian time-domain least squares with broadband priors.

models with appreciable probability to wavelets whose first p

moments are zero.

2.3.2 Smooth wavelet tails

Broadband signatures observed in practice with a successful
recovery of the low-frequency content have the character of
appearing almost like a perfect spike, but with long, weak,
and very smooth wavelet coefficients at larger positive and
negative lags (e.g., wavelet side lobes). The long tails have a
low-frequency character and, given the diminishing natural
well log reflectivity power at low frequencies, they will con-
tribute only rather modestly to synthetic amplitudes and any
misfit improvement. Since they require numerous wavelet co-
efficients, the standard Bayesian evidence will strongly demote
such models unless the new coefficients yield very significant
misfit improvements, which is unlikely. Normally, wavelets
estimated with long flexible tails tend to fill up with noise-
related over-fitting features. Therefore, even if these weak tails
are truly present underneath the spurious features, the anti-
overfitting Occamist machinery tends to overwhelm them.

Roughly speaking, they demand too many degrees of freedom
for marginal improvements in data fit, at least in sample-based
representation.

The long tails may result from physical processes that are
inherently slow but can be described with very few param-
eters, such as the tail decay of a Butterworth filter impulse
response (ten Kroode et al. 2013), or perhaps residual arte-
facts of the slow air-bubble oscillations (Poole et al. 2013). So,
a representation of these tails in a more parsimonious form
may help them to survive the model-selection tests that usually
favour shorter wavelets.

We propose a mode of inference wherein the wavelet
coefficients aw outside the interval [−T,T] are strongly cor-
related and tapered. When this mode operates, the tail co-
efficients have their prior covariance set to the simple krig-
ing covariance (Deutsch and Journel 1997) generated by the
correlation structure Cp,i, j ∼ σ 2

w exp(−|i − j |/λT), with zero
values at the wavelet edges, where p is as defined in equa-
tion (7), i and j are sample indexes, σw is the uncertainty
in wavelet coefficients, and λT is the correlation length. The
blocks of Cp corresponding to the positive lags [T,Tmax] do not

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–20
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Figure 5 Blind QC at well 2 using the constant phase wavelet from well 1 (see also Fig. 1). The red curve is the inverted impedance, and the
black curve is the well-log impedance.

correlate with the blocks of negative lags [Tmin,−T], and the
central values are uncorrelated. The outcome of this technique
is that the long tails are generated by many fewer effective
degrees of freedom in the prior, and the model-selection ma-
chinery then begins to promote these longer models.

3 R EAL D ATA EXA MPLE

A broadband dataset from the North West Shelf of Australia
has been used in this paper. The majority of the area is gently
dipping, and we used two sub-cubes of data around two wells.

The seismic data are sampled at 4 ms, has a high signal-to-
noise ratio, and also exhibits a very good bandwidth from
3 Hz to approximately 80 Hz, as will be seen in the estimated
wavelets. In the following, we compare the performance of
the wavelet estimation techniques introduced in this paper:
constant phase, frequency-domain least squares with Papoulis
and multi-tapering, and Bayesian time-domain least squares
with and without broadband priors.

An important aspect of well tie is quality control (QC).
One can use the estimated wavelets to invert the seismic data
for impedance at the well location. However, by inverting at

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–20



10 E. Z. Naeini, J. Gunning and R. White

Figure 6 Blind QC at well 2 using the frequency-domain least-squares wavelet from well 1 (see also Fig. 2c). The red curve is the inverted
impedance, and the black curve is the well-log impedance.

the same well, the estimated wavelet almost always leads to
an acceptable result. A more rigorous and physically valid
approach would be cross-validation, which would require at
least two wells. Here, by having two wells, we have taken the
cross-validation approach to analyse the quality of the well-
tie wavelets. The input seismic data are the near-angle stack
cube. To facilitate this, the wavelets estimated at well 1 are
used in a model-based inversion engine to invert for acoustic
impedance (AI) at well 2 and vice versa (this is also sometimes
referred to as blind QC to signify that the QC is performed at
a well that was not involved in the derivation of the wavelet).

Model-based inversion (or more generally simultaneous pre-
stack inversion) is often formulated to minimise:

E = ‖y − Gm‖2 + λ‖m − μ‖2, (8)

where m is the logarithm of impedance (the logarithm is im-
posed to linearise the inverse problem), μ is the low-frequency
background model (Douma and Zabihi Naeini 2014), y is the
seismic data, and G is the forward modelling matrix that in-
cludes the wavelet coefficients in a convolutional matrix form.
The model weight λ quantifies the importance attached to the
second term (model residual) relative to the first term (data

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–20
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Figure 7 Blind QC at well 2 using the Bayesian time-domain least-squares wavelet with broadband priors from well 1 (see also Fig. 4). The red
curve is the inverted impedance, and the black curve is the well-log impedance.

residual) in equation (8) and therefore is equivalent to the
ratio ( σd

σm
)2 where σd is the noise root mean square (RMS),

and σm is the standard deviation of the model. Here, σd can
be estimated from the well-tie process (i.e., RMS of the error
reported as RMSE in our well-tie plots) and should be incor-
porated accordingly in cross-validation tests. σm is estimated
from well-log data deviations from the low frequency trend
(σm does not change when the input wavelet changes).

3.1 Wavelet estimation at well 1 and QC at well 2

Figure 1 shows a well-tie plot at well 1, including the Vp,
Vs, density (Rho) logs, the synthetic seismogram using the

estimated constant phase wavelet shown on the right, the
recorded seismic data at the well, and the residual. The well
tie is performed using the available log length of 900 ms, as
shown in Fig. 1. Using equations (2) to (5), the estimated
phase, lag, and the corresponding errors are also displayed.
The amplitude spectrum of the wavelet demonstrates the
broad bandwidth of the input seismic data. The low-frequency
decay, which manifests itself in the long and smooth tails of
the wavelet, indicates that our proposed strategy of using a
long time window of the seismic data combined with multi-
tapering works very well.

The correlation coefficient (CC), proportion of the energy
predicted by synthetic seismogram (PEP, White and Simm

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–20
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Figure 8 Well-tie plots at well 2 from (a) constant phase, (b) frequency-domain least squares with multi-taper modification, and (c) Bayesian
time-domain least squares with broadband priors.
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Figure 8 Continued

2003), and the RMSE of the data-synthetic misfit are also
reported in Fig. 1. As can be observed, this wavelet results
in a very good quality tie. RMSE will be used in impedance
cross-validation QC later. In the following, to save space, we
show the well-tie plots only when required. In other cases
where there is not a significant difference visually, we only
show the estimated wavelets.

Figure 2 shows two wavelets from the frequency-domain
least-squares method. The wavelet in Fig. 2(a) is with Papoulis
tapering and Fig. 2(b) is with multi-tapering. It is evident that
the low-frequency decay is not captured when Papoulis taper-
ing is used. Multi-tapering indicates a low-cut decay without
estimating it well and at the cost of a slightly noisier spectrum.
Moreover, the kink in the phase spectrum around 80 Hz (pos-
sibly due to low S/N) does not look realistic. One would ideally
like to have a smooth spectrum similar to that of Papoulis but
with a better decay. This can be achieved by imposing the
low amplitude decay from the multi-taper wavelet on the Pa-
poulis wavelet. Furthermore, the kink in the phase spectrum at
80 Hz can be smoothed. The final result is shown in Fig. 2(c),
in which the wavelet, notably the side lobes which are an

important indicator of noise and over-fitting, now appears to
be more stable and less noisy. It can be observed that the well-
tie QC attributes (RMSE, PEP, and CC) do not change signifi-
cantly with such modifications at the low end of the spectrum.
This demonstrates the insensitivity of the well-tie process to
the very low-frequency content. Nevertheless, these attributes
show a high-quality well tie, and moreover, the outcome is
consistent with the constant phase wavelet in Fig. 1. Further
possibilities are to extrapolate the phase at low frequencies to
a multiple of 90° at 0 Hz following White and Zabihi Naeini
(2014). We have not observed any significant benefit of doing
that on this dataset.

As mentioned, in the Bayesian time-domain least-squares
method, Gunning and Glinsky (2006) discussed the prob-
lem of wavelet length and treated it as a model-selection
problem. That is, they invert for the most likely wavelet
model among N models with different lengths. Although their
implementation is different, it is similar to the stan-
dard Bayesian information criterion (BIC), which effectively
penalises models that fit only marginally better than sim-
pler models (e.g., shorter wavelets). Figure 3 shows the

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–20
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Figure 9 Blind QC at well 1 using the constant phase wavelet from well 2 (see also Fig. 8a). The red curve is the inverted impedance, and the
black curve is the well-log impedance.

well-tie plot and the estimated wavelet with auto-selection
of the wavelet length. The well tie produces a significantly
shorter wavelet with more misfit energy than the previous
two methods, and the resulting wavelet does not carry the
low-frequency content expected from this dataset. Figure 3 is
only shown here to demonstrate the need for broadband pri-
ors introduced in this paper for the time-domain least-squares
method.

Figure 4 shows the well-tie plot from the same method but
with a user-defined wavelet length and appropriate broadband
priors as discussed. In this case, the first-order polynomial
decay is set to zero, and wavelet tails are constrained to be

smooth. The estimated wavelet now is significantly improved
and exhibits a sharp decay at low frequencies. RMSE (note
also the reduction in residual), PEP, and CC are also improved
when compared with those in Fig. 3. It is reassuring that all
three methods result in a very good well tie and the estimated
wavelets have similar characters.

The estimated wavelets in Figs. 1, 2(c), and 4 are now se-
lected for QC at well 2. This is a completely blind QC, i.e., we
use a model-based inversion to invert for AI at well 2 using the
selected wavelets estimated at well 1. The results are shown
in Figs. 5, 6, and 7. The RMSE between the inverted relative
impedance and well-log relative impedance is a very useful QC
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Figure 10 Blind QC at well 1 using the frequency-domain least-squares wavelet with multi-taper modifications from well 2 (see also Fig. 8b).
The red curve is the inverted impedance, and the black curve is the well-log impedance.

tool. CC is also displayed for reference. Generally, we prefer
to analyse the RMSE and CC of the relative impedance as
the CC for the absolute impedance is biased by the impact of
the low-frequency background model (shown by a thin blue
curve in the absolute impedance panel). The difference be-
tween the real seismic data and the modelled synthetic (resid-
ual panel in Figs. 5, 6, and 7) is also a useful attribute. The
very low amplitudes of the residual traces from the inversion
compared with those from the well ties show that the inversion
drives misfit errors into the inverted impedance. Nonetheless,
the residual traces are helpful in that they indicate any mis-
match in the low-frequency content (Figs. 6, 1.8–2 s) or in
high-frequency content (Fig. 7). These effects are seen better

in section displays (White and Zabihi Naeini 2014). It can
be observed that all wavelets produce impedance that fits the
well-log impedance almost equally well. The constant phase
wavelet has the lowest RMSE of the relative impedance, and
the residuals between the seismic data and synthetic traces are
the smallest of the three.

3.2 Wavelet estimation at well 2 and QC at well 1

Well-tie experiments are performed in the same order as in
the previous section to complete the cross-validation. Well 2
has 600 ms of log data available; therefore, we expect well-tie
quality to be lower. The estimated wavelets at this well are
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Figure 11 Blind QC at well 1 using the Bayesian time-domain least-squares wavelet with broadband priors from well 2 (see also Figure 8c). The
red curve is the inverted impedance, and the black curve is the well-log impedance.

limited to the three best options found from well-tie analysis
at well 1, namely constant phase, frequency-domain Papoulis
with low frequency modification using the multi-taper coun-
terpart, and Bayesian time-domain least squares with broad-
band priors.

Figures 8(a), (b) and (c) show well-tie plots from the three
methods. Inspection of the RMSE, CC, PEP, and phase error
values show that this tie is not as close as the tie at well 1,
although it is still a good tie. Again, all three methods perform
consistently and give similar results.

Figures 9, 10, and 11 show the blind QC at well 1. Again,
all three methods perform almost equally well. The Bayesian
time-domain least squares give slightly improved results in
the well-tie plot of Fig. 8(c) and the corresponding blind QC
in Fig. 11. This could indicate that, for shorter log lengths,
the Bayesian time-domain method with broadband priors can
achieve better results.

Overall, the simplicity of the constant phase wavelet and
its robust performance on the cross-validation QC encourages
one to choose it for this case study. That is largely due to the
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Figure 12 QC at well 1 using the constant phase wavelet estimated from well 1 (see also Fig. 1). The red curve is the inverted impedance, and
the black curve is the well-log impedance.

high-quality seismic data that have been nicely processed to
180° phase with a residual phase error of only around 10°.
The availability of well-conditioned logs is another reason for
the good-quality well tie in this study.

3.3 Final remarks

The cross-validation or blind QC approach proposed in this
paper is recommended as a powerful consistency test of the
estimated wavelet across the survey at different well locations.

If one chooses to QC the wavelet only at the well location
where the wavelet was estimated from, it is almost certain
that the result is as good as or better than the blind QC. For
instance, the constant phase wavelet estimated from well 1 in
Fig. 1 performs nicely in the blind QC examples provided in
this paper. Figure 12 shows the QC at well 1 instead, which
as expected has a superior performance when compared with
the blind QC at well 2 (e.g., Fig. 9).

The notable success of the constant-phase method ob-
served in this application does not imply that a comparably
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Figure 13 Section displays of inverted AI around well 1, using the wavelet of Fig. 1 (top), and a simple 180° autocorrelation wavelet for
comparison Fig. 1. (bottom). Note the improvement at locations shown with arrows.
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simple 0/180 phase or autocorrelation-wavelet approach will
work equally well. The 10° phase difference is significant.
Figure 13 shows two section displays of inverted AI around
well 1, using the wavelet of Fig. 1, and a simple 180° au-
tocorrelation wavelet for comparison. The constant phase
wavelet results in a much better match, resolving thin layers
unseen by the auto-correlation wavelet (see black arrows in
Fig. 13).

4 C ONCLUSION

Three wavelet estimation methods for broadband seismic data
have been proposed and tested on a case study from the North
West Shelf of Australia. The constant phase method reduces
the number of degrees of freedom of the solution and splits
the problem into two problems: the amplitude spectrum is es-
timated using multi-tapering over a long window of seismic
data; the phase, time lag, and a scale factor are computed us-
ing the cross-covariance of the seismic data and the synthetic
seismogram. Frequency-domain least squares does not benefit
much from incorporating multi-tapering when calculating the
auto- and cross-spectra. Any improvement at low frequencies
is limited by the available log length. The ability to compute
the errors for the wavelet’s amplitude and phase spectra still
gives this technique a role as a diagnostic tool, for example,
in deciding whether the phase varies with frequency. In the
Bayesian time-domain method, the use of broadband priors
was shown to improve its performance. A cross-validation
approach was demonstrated as a robust method of quality
control of the estimated wavelets. The well tie used to test
these techniques was a very close one. The seismic data ap-
pear to have been processed to approximately 180° phase,
which made the constant phase method a valid choice. The
other two methods also performed well. The application of
Bayesian broadband priors, which constrain the wavelet to
have a low-order polynomial spectral decay to DC, imparts
smooth broadband side lobes to the wavelet and counter-
acts the restriction of short log lengths very effectively. A
recommended work flow for general use would be to run
the constant phase method prior the other two in order to
understand the well tie and its potential challenges. Any im-
provement from the other two methods can then be judged
against this.
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APPENDIX

Estimation of a phase and time lag from a cross-correlation
implies the following phase law:

θ (f ) = 2π f τ + θ0 + e (f ), (A.1)

where f is the frequency, τ the time lag, θ0 the phase inter-
cept at zero frequency and e( f ) an error term arising from
random noise. Given any parametric phase relation θ ( f ),
Hamon and Hannon (1974) give a general equation for the
variance–covariance matrix of the maximum-likelihood para-
metric phase estimates. This matrix is T−1V−1, where T is
the duration of data segments, and the ( j, k)th element of the
matrix V is

v j,k = 2b
∑

B

θ j ( fl ) θk ( fl )(
γ ( f )−2 − 1

) , (A.2)

where θ j ( fl ) is the differential of θ ( f ) with respect to the jth
parameter evaluated at frequency fl using the estimated pa-
rameters, b is the analysis bandwidth of the spectral window,

B is the spectral bandwidth of the seismic data, and γ ( f ) is
the spectral coherence at frequency f.

This equation is not particularly informative, but it can
be simplified for the parametric phase of equation (A.1). If
it is further assumed that the signal-to-noise ratios and hence
the spectral coherence of the recordings are fairly constant
over the signal bandwidth (γ ( f ) would be equivalent to the
magnitude of the peak of the envelope of the cross-correlation
coefficient R), then equation (A.2) becomes more revealing. In
this case, the denominator can be taken outside the sums. Ap-
plication of equation (A.2) requires the coherence estimates
to be independent, which in turn requires that the frequen-
cies f are separated by the analysis bandwidth b. There are
therefore B/b terms in each sum. On substituting the differen-
tials, the cross term v12 = v21 contains a sum over equispaced
frequencies and the diagonal term corresponding to τ has a
sum over squared frequencies. The first sum is proportional to
the average or centre frequency of the signal bandwidth, and
the second sum can be evaluated using series (19) and (32) in
Jolley (1961). Finally, inverting the matrix V, we find that the
variance of estimated time shift is

variance {τ } = 3
π2

(
B2 − b2

)
(
R−2 − 1

)
2BT

. (A.3)

The variance of the predicted phase shift at frequency
f is

variance {θ ( f )} =
[

1 + 12
(

f − f̄
)

(
B2 − b2

)
] (

R−2 − 1
)

2BT
, (A.4)

where f̄ is the centre frequency of the signal bandwidth. Since
B2 � b2, equation (A.3) leads to equation (4). Moreover, the
phase error around the centre frequency (i.e., f = f̄ ) is a
better indication of the phase error in a seismic wavelet; hence,
equation (A.4) leads to equation (5).
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