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Summary 
 
A pre-stack simultaneous inversion in the Cooper-Eromanga Basin has produced very good predictions 
for all elastic properties: acoustic impedance (AI), shear impedance (SI) and density (Rho). The 
predicted relative elastic properties show very high correlations (>80%) with well data and surprisingly 
higher correlations for density than the other elastic properties. For many reasons, direct and accurate 
estimation of density from seismic AVO is expected to be difficult (e.g. Lines, 1998). Good quality 
predictions of density in this case are driven by constraints within the inversion. It is common to 
constrain density through a relationship with acoustic impedance such that when acoustic impedance is 
well predicted, density will also be reasonably predicted. Standard model based simultaneous inversions 
suffer from a lack of flexibility in setting constraints, which can be overcome through facies based 
simultaneous inversion where the relationships between the elastic properties vary with facies. When 
the facies can be accurately delineated from the seismic, very good predictions of density can be 
achieved even though the seismic data do not resolve the density directly. The higher correlations 
achieved for density than acoustic impedance are due to the larger dynamic range of density than for p-
velocity. 
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Introduction 
 
A pre-stack simultaneous inversion over the Mid-Jurassic interval in the Cooper-Eromanga Basin, 
South Australia produced very good predictions of elastic properties: acoustic impedance (AI), shear 
impedance (SI) and density (Rho). The predicted relative elastic properties show very high correlations 
(>80%) with well data and surprisingly higher correlations for density than for the other elastic 
properties. Direct and accurate estimation of density from seismic AVO is expected to be difficult for 
many reasons (e.g. Lines, 1998). Density is expected to be less well resolved than shear impedance, 
which in turn is expected to be less well resolved than acoustic impedance. Direct estimation of density 
from PP seismic data is expected to require a large range of angles, high signal to noise ratio and 
low/known anisotropy. This paper investigates the results of two types of inversion, a model based 
simultaneous inversion (model based inversion) and a facies based simultaneous inversion (facies based 
inversion), to understand why such a good density prediction has been achieved and whether any of the 
density information is being driven directly by the seismic amplitude variation with offset. 
 
Case Study 
 
The location of the study is in Cooper-Eromanga Basin, South Australia. The main targets are the oil 
bearing siliciclastics of Mid Jurassic to Permian intervals. In general, the sands are clean to shaly with 
average porosity from 15-26pu and oil saturation of 24-51pu. Carbonates are present and cause strong 
seismic events. All the wells have measured p-velocity and density and reasonably well predicted s-
velocity logs. The area is covered by a 3D seismic survey that has been PSTM processed and output to 
eight partial angle stacks (5, 12, 17, 22, 27, 32, 37 and 42 degrees). 
 
Model Based Inversion 
 
Deterministic simultaneous inversion is a method to estimate the elastic properties of the subsurface 
from multiple partial angle/offset stacked seismic data. The inversion seeks to find a model that 
minimises the difference between the synthetic seismic derived from that model with the measured 
seismic data. In order to avoid overfitting of the seismic data, i.e. fitting the noise, constraints are 
applied. In model based simultaneous inversion, a background model is supplied and variations away 
from this model are controlled. Equation 1 shows the objective function, J, for the case where the least 
squares solution is sought: the inversion seeks to minimise the objective function. The model weight, 
, determines the degree to which the solution is determined by the fit to the seismic or the mismatch 
with the background model. The model, Z, represents the elastic properties, typically acoustic 
impedance, shear impedance and density. As previously noted, it is expected that the resolution of 
density and shear impedance are more affected by noise than acoustic impedance and so these terms 
often require further stabilisation. One approach to this is to add the so called rock physics constraints. 
In the method used for this study a simplified description of the rock physics constraints is that an 
assumption is made that density is linearly correlated to acoustic impedance in the logarithmic domain. 
Therefore, rather than only constraining variations of the density around the density background model, 
the density is also constrained to vary around the  conversion to density of the inverted acoustic 
impedance through a specified linear relationship. The same approach holds for the shear impedance.  
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There are a number of limitations associated with this method. In the case of noisy data, which might 
require a strong constraint (e.g. high value of in equation (1)), the solution is forced towards the 
background model that in many cases will be a low frequency representation of the subsurface and may 
also be a rather simple interpolation of well data and therefore biased. Another key concern is that in 
reality the relationship between acoustic impedance and density will not be constant, but vary  
depending on the local rocks and fluids, the distribution of which is unknown prior to inversion. Most 
deterministic simultaneous inversion algorithms use some form of rock physics relationships as 
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described above and therefore suffer from similar limitations. This all means that if the density 
constraint is weak, then there is no guarantee that the density will take reasonable values even if the 
acoustic impedance has been accurately predicted and if the density weight is strong. The density result 
is likely to be biased by the chosen trend which may represent an average for the various rocks and 
fluids present. 
 
Facies Based Inversion 
 
The limitations described above can be overcome by using a facies based inversion. In the approach 
presented by Kemper and Gunning (2014), a number of facies are selected and for each facies a depth 
dependent probability density function is found for the elastic properties. The inversion solves jointly 
for the most likely distribution of facies and the elastic properties. This means that where a particular 
facies is predicted, the elastic properties estimated at that location will be consistent with the 
corresponding rock physics constraints encoded in the probability density function. This means that if 
the facies is predicted correctly at any point and the acoustic impedance is reasonable, then the shear 
impedance and density will also be reasonable. 
 
Discussions 
 
One method to see if density information is being derived from the seismic amplitudes is to switch off 
the rock physics density (and shear impedance) constraint in the model based inversion. The average 
correlation factors over 8 wells are shown in Table 1.  The cross correlation numbers are for the elastic 
properties after bandpass filtering to the seismic bandwidth, thus avoiding bias from the low frequency 
component of the background model (since background model is derived from the well data, it would 
therefore exaggerate the correlation). The correlation for density indicates that the predictions are no 
better than random, that is the seismic data have no predictive power for density. The correlation for 
shear impedance suggests seismic amplitudes are able to provide some control on shear impedance. 
 

Inversion Types 
Inverted Relative 

AI 
Inverted Relative 

SI 
Inverted Relative 

Density 
Inverted Relative 

Vp/Vs 
Model based 

inversion with no 
rock physics 
constraints 

0.78 0.69 -0.06 0.39 

Model based 
inversion with 
optimised rock 

physics constraints 

0.81 0.79 0.69 0.56 

Facies based 
inversion 

0.80 0.80 0.84 0.60 

 
Table 1: Summary of cross-correlations (XCC) for the three inversion cases. The values are averages 
over eight wells. 
 
The inversion is run again but this time using the rock physics constraints, where the slopes of the rock 
physics relationships and the weighting factors for each elastic property have been optimised to provide 
the highest correlations.  The results suggest that density is being predicted quite accurately, almost to 
the same degree as the acoustic impedance. However, it is clear that the accuracy of this prediction is 
being driven by the rock physics constraint and not the AVO, although the result is compatible with the 
angle stack amplitudes. The result of this inversion at one of the wells is shown in Figure 1. It can be 
observed that there is a very high correlation between the relative acoustic impedance and relative 
density (and also between acoustic impedance and shear impedance). 
 
The result of the facies based inversion is shown in Figure 2 and the correlations in Table 1. The 
correlations for density and shear impedance are higher than for the model based inversion. It can be 
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observed in Figure 2 that the correlation between the acoustic impedance and the density is not as strong 
as for the model based inversion (Figure 1). For example, just above the calcite rich section at 1260ms 
there is a low relative density. In the model based inversion this is too low and driven by the variation 
in the acoustic impedance. In the facies based inversion the result is more accurate because density is 
restricted to take realistic values. 
 

 
Figure 1: The first panel is facies classified from well data. The third to sixth panel show well absolute 
elastic properties curves in black colour and low frequency initial models in blue colour. The seventh 
to tenth panel show well relative elastic properties curves in black colour and inverted relative elastic 
properties in red colour. This well plot is the result of model based inversion with optimised rock physics 
constraints.  
 

 
Figure 2: The first panel is facies classified from well data. The third to sixth panel show well absolute 
elastic properties curves in black colour and low frequency initial models in blue colour. The seventh 
to tenth panel show well relative elastic properties curves in black colour and inverted relative elastic 
properties in red colour. This well plot is the result of facies based inversion.  
 
A further test is made by limiting the angle range of the data used in the inversions. The inversions are 
run using one stack, and then again with two stacks and so on up to eight stacks. Note that, in fact, the 
model based inversion requires at least three stacks to determine density, whereas the facies based 
inversion will predict all elastic properties independent of the number of stacks. The results of the 

1260ms 

1260ms 
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correlations are shown in Figure 3, again with average values over all 8 wells displayed. The model 
based inversion shows a deterioration, be it very small, in density correlation, which again suggests that 
the seismic amplitudes are not contributing to the density prediction. The facies based inversion shows 
an increase in correlation with increased angle data for density whilst the correlation for acoustic 
impedance stays roughly the same. There is a sharp increase in density correlation stepping from one 
stack to two stacks. The obvious reason here is that the AVO information of the seismic is beginning to 
play a role in determining the facies and the better facies prediction is helping with the density 
prediction. The confusion matrix, which indicates the success of predicting facies, also shows 
improvement as the number of stacks is increased. The higher correlation for density compared with 
acoustic impedance is the result of a larger dynamic range of density compared with p-velocity, thereby 
reducing the impact of noise on the correlation for density. The correlation with p-velocity is only 0.70 
compared with 0.84 for density. 
 

 
 
Figure 3: The cross-correlations (XCC) between the inverted and well data as the angle range of the 
seismic data is increased. The values are averages over eight wells. 
 
Conclusions 
 
The high quality prediction of density observed in the original study can be shown to be the result of 
the constraints that are applied within the inversion. A facies based inversion provides better quality 
density predictions than a standard model based inversion due to the ability of the former to: a) define 
different interrelationships between the elastic properties for each facies; b) accurately predict facies 
based on acoustic impedance and shear impedance from seismic amplitudes. 
 
Acknowledgement 
 
The authors would like to thank Beach Energy Limited for permission to present these data. 
 
Reference 
 
Kemper, M., & Gunning, J., 2014, Joint Impedance and Facies Inversion - Seismic Inversion 

Redefined: First Break, 32, 89-95. 
Lines, L. R., 1998, Density contrast is difficult to determine from AVO: CREWES Research Report, 

10. 
 

0.40

0.50

0.60

0.70

0.80

0.90

1 6

X
C
C

Number of Offset Increment

Model Based Inversion

AI

Vp/Vs

Rho 0.40

0.50

0.60

0.70

0.80

0.90

1 6

X
C
C

Number of Offset Increment

Facies Based Inversion

AI

Vp/Vs

Rho


