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An integrated deep learning solution for petrophysics, 
pore pressure, and geomechanics property prediction

Abstract
In unconventional plays, wells are drilled at an unprecedented 

rate. This, together with technical challenges in terms of complex 
stratigraphy, multiple play types, variable rock properties, and 
various elements of pore pressure, geomechanics, fracturing, and 
diagenesis, calls for more sophisticated, faster, consistent, and 
wider ranging analytical tools. Given the scale of the work — i.e., 
the number of wells — performing classical workflows for pet-
rophysics, pore pressure, and geomechanics prediction can be 
impractical (if not impossible) due to turnaround considerations. 
Also such workflows might not use any preexisting regional studies 
efficiently. In principle, a machine learning approach can mitigate 
these shortcomings. We show that a supervised deep neural 
network approach can be an alternative innovative tool for pet-
rophysical, pore pressure, and geomechanics analysis enabling 
the use of all the previously interpreted data to devise solutions 
that simultaneously integrate wide-ranging wellbore and wireline 
logs. Beyond that, a similar approach is taken to predict a certain 
number of attributes solely from seismically derived properties, 
which allows one to compute volumetric models. The application 
of such an algorithm is shown on a Permian case study in which 
the automatic neural-network-based algorithms achieve reasonable 
accuracy in a fraction of the time.

Introduction
In unconventional resource plays, pore pressure prediction 

plays a critical role in the ability to predict areas of high overpres-
sure and fracture behavior for the exploitation of these plays, 
which are both correlated with production. Traditional pore 
pressure prediction focuses exclusively on clay-rich shales and 
assumes that all shales have a porosity/effective stress relationship 
that can be used to link the mechanical compaction of the rock 
to the pore pressure via the vertical stress (overburden). 
Unconventional shales are uplifted and are affected by chemical 
processes and diagenetic alteration of the elastic properties such 
that porosity is not typically relatable to effective stress, resulting 
in a more complex pore pressure prediction workflow.

Shales in unconventional plays also have variable clay content 
and complex multimineral fractions that require a detailed pet-
rophysical assessment reinforced with rock-physics modeling 
where needed. For example, changes in total organic content 
(TOC) have a similar response in elastic properties to changes in 
porosity. Therefore, any pressure-stress property model for uncon-
ventional plays must be supported by clean, petrophysically 
conditioned elastic logs and accurate multimineral sets calibrated 
to core data. Having said that, the multimineral petrophysical 
assessment is a time-consuming process because each well must 
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be assessed individually before being quality checked as part of 
a multiwell process for consistency.

The Permian Basin, which is a mature hydrocarbon “super-
basin” located primarily in west Texas and extending into 
southeastern New Mexico, has produced more than 39 billion 
barrels (cumulative) of oil since it began production in the 1920s. 
The conventional production peak in 1973 of 790 million barrels 
was surpassed in 2017 with 815 million barrels of oil (IHS, 
2018) due to unconventional production. The most astonishing 
fact of all is that as many as 1 million additional wells might be 
drilled in the foreseeable future (Nunn et al., 2018). This, together 
with the Permian’s technical challenges in terms of complex 
stratigraphy, near-surface complications that affect velocity 
modeling, multiple play types, variable rock properties, and 
various elements of pore pressure, geomechanics, fracturing, 
and diagenesis, calls for more sophisticated, faster, consistent, 
and wider ranging analytical tools. Given the scale of the work 
— i.e., the number of wells — performing classical workflows 
is impractical (if not impossible) due to turnaround considerations 
and also may not use previous regional studies efficiently. These 
factors are the motivation behind this paper, which presents 
machine learning as an alternative innovative tool for petrophysi-
cal, pore pressure, and geomechanics analysis enabling the use 
of all available data to devise solutions that simultaneously 
integrate wide-ranging wellbore and wireline data.

The case study presented here, located in the Delaware Basin 
of the wider scale Permian Basin, demonstrates the effectiveness 
of focusing on building integrated petrophysical, pore pressure, 
and geomechanical models for a selection of key wells. Subsequently, 
a machine-learning-based approach can be used to produce con-
sistent interpretations for the desired properties. This approach 
has the advantage that once the algorithm is trained efficiently, 
it then can be quickly applied to any number of wells within the 
area of interest. However, sufficient care must be taken to assure 
the algorithm generalizes to the new cases as part of the training 
process and to ensure that the workflow incorporates a robust 
cross-validation strategy.

The following sections discuss the standard approach and the 
development of a neural network algorithm to predict petrophysical 
properties, pore pressure, and stress to understand drilling and 
completion behavior, and ultimately production, better.

Standard unconventional workflows
Multimineral petrophysics. Petrophysical interpretation of 

unconventional plays can be challenging and time consuming. 
The mineralogy of these rocks tends to be complex, with a mix 
of carbonates, siliciclastics, and organic-rich beds. The presence 
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of kerogen in the rock will lead to high readings on gamma ray 
and resistivity, with higher porosity being indicated by logs such 
as density and sonic. The kerogen effect also must be accounted 
for in any petrophysical analysis of these plays.

A common approach to petrophysical interpretation of such 
rock types is the use of a multimineral solver. This allows the 
petrophysicist to generate a volume of each mineral and fluid deemed 
present in the rock. A volume of kerogen also can be generated 
within the model or calculated initially using various methods 
(Passey et al., 1990; Vernik, 2016) and the resultant volume included 
as an input into the multimineral solver. The resultant multimineral 
model often requires parameter adjustment or some log normaliza-
tion at each well. Another vital part of this workflow is the calibra-
tion of results. Traditionally, this is achieved using core data. Core 
measurements of TOC are used to calibrate the kerogen volume 
while mineral volumes can be calibrated using X-ray diffraction 
(XRD) and interpreted porosity adjusted to core porosity. It is often 
the case that such data are scarce, or nonexistent, which can lead 
to default regional values being employed in the analysis.

Pore pressure and geomechanics property prediction. The critical 
assumption underpinning traditional pore pressure prediction is 
that the variations observed in specific wireline data (P- and S-sonic 
often expressed as VP, VS, density, neutron, and resistivity) vary 
solely due to changes in porosity and that the porosity is controlled 
by the pore pressure. Shales in unconventional plays are (or were) 
at high temperature leading to diagenetic alteration of the mineral-
ogy, are often dramatically uplifted, and have been affected by 
chemical processes in addition to mechanical compaction such 
that porosity might not be solely relatable to effective stress. 
Furthermore, the link between pore pressure and log response can 
be disrupted further by the presence of organic material (high 
TOC) and/or free gas in the pore space. Although these challenges 
are not unique to unconventional plays, they are more likely to be 
present. An increase in TOC has been shown to significantly lower 
the magnitudes of velocity and density (Passey et al., 1990). Gas 
in the pore space has a similar slowing effect on the VP data. 
Although the TOC effect has a linear relationship with log 
response, the gas effect is not as straightforward to correct for due 
to the nonlinear effect of gas saturation. Slow velocity (either due 
to TOC or to free gas in the pores) and low density are typically 
attributed to an increase in pore pressure, as they imply high 
porosity, so the TOC/gas effect should be removed from log data 
in order to correctly predict pore pressure.

In spite of these issues, it still can be possible to derive a relation-
ship between wireline data and the pressure magnitude. Ebrom et 
al. (2003) demonstrated a relationship between VS and pore pressure 
that circumvents the effect of gas on the VP data by modifying the 
Eaton (1975) pore pressure method with a bespoke exponent. More 
recently, Zhang and Wieseneck (2011) presented a case study from 
the Haynesville and Bossier plays in the southern United States 
where a pseudo-VP was computed from measured VS using a cali-
brated Castagna approach to avoid the slowing effect of gas on 
measured VP. This approach was further modified by Couzens-
Schultz et al. (2013) who showed that VS data could be used directly 
to predict pore pressure in the same unconventional plays. The two 
recent examples mentioned here used the Bowers (1994) method 
to develop the pore pressure prediction algorithm.

The execution of geomechanical modeling in unconventional 
plays is more established and does not suffer from the same prior 
assumptions (dependence on a porosity-effective stress relationship) 
that pore pressure analysis does. However, the pore pressure is a 
critical input into the geomechanical model. Hence, there is a 
critical dependence on the petrophysical conditioning of the data, 
as well as the multimineral petrophysics. Rauch-Davies et al. 
(2018) highlighted that geomechanical behavior cannot be robustly 
predicted without a reliable estimate of the pore pressure.

Deep learning
A neural network is a powerful machine learning tool char-

acterized by its neurons and the corresponding weights, biases, 
and activation functions. When a neural network has multiple 
fully connected layers, it is known as a deep neural network or a 
deep learning mechanism. Deep neural networks can be imple-
mented to perform either classification or regression tasks. The 
activations function imposes nonlinearity and differentiates deep 
neural networks from linear regression methods.

In this study, the designed neural network has the structure 
shown in Figure 1. Because the objective is to predict various 
continuous properties (e.g., petrophysics, pore pressure, and geo-
mechanics), the network performs a regression task. The activation 
function is a rectified linear unit, known as ReLU. A ReLU is a 
nonlinear function allowing back propagation of errors across 
multiple layers. The cost function in this study is the root-mean-
square error between the predicted and the training values mini-
mized using a gradient descent method.

To quality control (QC) the performance of the deep neural 
network, a robust cross-validation strategy was implemented, 
consisting of two parts. First, 20% of the training data were set 
aside to track the minimization performance during the training 
and avoid overfitting. Second, a number of wells were set aside for 
blind testing after the training was complete. In what follows, we 

Figure 1. A schematic display of the neural network implemented in this study. 
Each neuron is characterized by its weights, bias, and ReLU activation function.
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show the properties predicted via the deep neural network in the 
blind wells and compare the precision against the manually inter-
preted data where available. Furthermore, the implemented work-
flow was integrated such that some of the outputs from the predicted 
petrophysics logs (e.g., volume of shale and kerogen) were fed to 
the subsequent pore pressure and geomechanics networks.

We then take a further step by predicting the same properties 
using the seismic data over the same area as the wells. Given that 
one can obtain compressional and shear velocities and density 
(namely, VP, VS, and rho) from isotropic prestack amplitude-
variation-with-offset inversion (e.g., facies-based method proposed 
as discussed in Kemper and Gunning, 2014, and Zabihi Naeini 
and Exley, 2017), a separate network was trained to predict pore 
pressure, volume of kerogen, and geomechanical properties from 
the logs at the training wells. Then the network was applied to 
the corresponding VP, VS, and rho from seismic inversion at the 
wells. After quality checking the outcomes at the wells, shown 
in the following sections, the network was applied to the entire 
volume. The result of our study for both workflows mentioned 
earlier is shown on a Permian case study to follow.

Case study: Delaware Basin, Permian
Preparing training data for an integrated deep-learning-based 
prediction

1) Petrophysics. Well data used in this study were drawn from 
a previously executed extensive petrophysical analysis. As part of 
that study, approximately 1500 wells were evaluated, with abundant 
core data used for calibration of the final petrophysical results. 
This case study is based on a smaller subset of this data set. Figure 2 
shows the location of the 13 training wells and four blind test 
wells and also shows the seismic survey encompassing the training 
wells and two of the blind test wells. The two other blind test 
wells are located approximately 50 km to the southeast of the 
seismic survey to test the applicability of using the neural network 
away from the initial training well data set.

As part of conditioning the data, logs from various vintages 
required careful QC — i.e., log editing was performed to remove 
anomalous data, and log normalization and synthetic generation 
were also performed to create a con-
sistent data set. Volume of clay was 
calculated from a combination of a 
number of methods, including gamma 
ray and neutron density. The resultant 
volume was calibrated to core XRD 
data. TOC was estimated using the 
Passey method (Passey et al., 1990) 
and tied to core. Volume of kerogen 
was then calculated from TOC. The 
porosity, saturation, and other volumes 
(quartz, limestone, and dolomite) were 
then generated using the workflows 
described earlier. Additional data, such 
as nuclear magnetic resonance, gamma 
ray spectroscopy, reservoir properties, 
and chemistry were incorporated where 
possible. A final QC to ensure multi-
well consistency was performed. This 

formed the basis of training data and blind wells QC for the 
performance of deep-learning-based predictions.

2) Pore pressure and geomechanics. The pore pressure model
was constructed using direct measurements of pore pressure taken 
from either dynamic fracture initiation tests (DFIT), drill-stem 
tests (DST), or by an influx as interpreted from the drilling history. 
The pressure data, expressed as vertical effective stress (VES; 
vertical stress minus pore pressure) were crossplotted against the 
compressional velocity (VP) shifted by 5000 ft/s following the 
approach of Bowers (1994). Each of these data points was then 
assigned a quality flag based on the lithology it was taken in and 
the confidence in the wireline data at the same depth (Figure 3). 
The primary concern was the role of cement producing fast veloci-
ties which would have produced incorrect VP-VES models. 
Secondary concerns were TOC and in-situ gas, but neither of 

Figure 3. Velocity-effective stress crossplot showing a range of direct pressure data (DFIT, DST, Kicks) against wireline 
VP. A power law relationship following Bowers (1994) is shown, and anomalous data are highlighted and annotated.

Figure 2. Base map showing location of the training wells within the seismic 
survey area and the location of the blind test wells. The initial blind test wells 
are located within the survey, close to the training data, but two more blind test 
wells, approximately 50 km away, were chosen to highlight the effectiveness of the 
derived machine learning algorithm.
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these was a major concern within the sand-rich intervals (but 
remain a source of uncertainty within the shale-rich units).

The geomechanical analysis commenced with an interpretation 
of the image logs. Observations of drilling-induced tensile fractures 
were noted. A 1D analytical geomechanical model was then 

constructed using the poroelastic equations (Thiercelin and Plumb, 
1994) and the elastic properties calculated from the well logs using 
core data to constrain the dynamic to static conversion. The 
regional strain parameters were calibrated to the minimum hori-
zontal stress magnitude determined from DFIT measurements 
and to the maximum horizontal stress magnitude by solving the 
circumferential (hoop) stress around a vertical borehole and 
matching the predicted tensile failure to the occurrence (and 
nonoccurrence) of drilling-induced tensile fractures observed in 
the image logs (e.g., a blind test well from the geomechanical 
analysis in Figure 4). The calibrated model was then applied using 
the upscaled elastic log data to verify that the expected resolution 
of the property volumes to be determined by the seismic inversion 
would be sufficient to predict the DFIT closure pressure and 
tensile failure observed in the image logs.

3) Seismic-based property prediction. The seismic inversion
used a facies-based Bayesian prestack approach (Kemper and 
Gunning, 2014). There were two key advantages to applying 
this approach in this case study. First, the inclusion of facies in 
the inversion process removed the requirement for a conventional 
low-frequency model. This ensured that the distribution of later-
ally discontinuous units was defined only by the seismic reflectiv-
ity and not biased by any interpolation assumptions. Second, 
the inversion approach was calibrated using a set of facies-
dependent elastic property trends, rather than a single set of 
trends for the whole inversion window (Payne and Meyer, 2017). 

Therefore, the predicted elastic imped-
ance properties could be expected to 
honor the rock-physics relationships 
observed in the well-log data with 
greater fidelity. This is important when 
considering the subsequent geologic 
characterization and geomechanical 
analysis using the property volumes. 
Given the inverted VP, VS, and density 
using this method, the neural network 
(trained to predict the desired proper-
ties using well logs) was then applied 
to the entire seismic volume.

Deep learning predictions
We implemented three main neural 

networks all with similar structure as 
mentioned in the “Deep learning” sec-
tion. The reason was that each of these 
networks had a different objective, and 
the outputs from one were the inputs 
for the other.

Step 1: The first network was to 
predict petrophysical properties. The 
inputs for training were compressional 
velocity, gamma ray, density, resistivity, 
and neutron logs. The network was 
trained to predict volumes of shale, 
sand, dolomite, calcite, kerogen, and 
porosity simultaneously. Figure 5 
shows the predicted properties (red 

Figure 4. Example of the outputted tensile failure line (red curve) compared to the 
mudweight (thin black line) for a blind test well. The image log (left-hand track) 
records tensile failure of the wellbore down to approximately 9700 ft, as shown in 
the log track by the thick black line, which matches the behavior predicted from 
the geomechanical model — i.e., tensile failure curve is less than the mudweight.

Figure 5. Both blind test wells within the seismic survey area. Black data are the well-based petrophysics and 
rock-physics (pore pressure and geomechanics) model-based curves. The red curves are the product generated from 
the machine learning algorithm. At nearly all depths and for all log types, there is an excellent match between the 
well-based and machine-learning-based results.
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curves) versus manually interpreted logs (black curves) in the 
corresponding log tracks. It can be observed that the predicted 
properties demonstrate a reasonable accuracy when compared 
to the manually interpreted logs. With this QC in mind, the 
key benefit from the deep learning method is that the network 
can be applied in other wells in the area with an extremely fast 
turnaround as the application to new wells takes only seconds. 
This was examined on one of the wells outside the seismic volume, 
approximately 50 km away, as shown in Figure 6.

Step 2: Given an initial neural network to predict the 
petrophysical properties, the second neural network was then 
designed to predict pore pressure. In this case, the inputs were 
compressional and shear velocity, density, resistivity, neutron 
logs as well as porosity, volume of shale, and volume of kerogen 
predictions from the previous step. The result is shown in the 
“pore pressure” track in Figure 5. 
Again the proximity to the classic 
manual interpretation is evident. 
Furthermore, the predictions were 
done on a well outside the seismic 
volume as shown in Figure 6. One 
could argue that the reason for such 
a good prediction is the relatively 
straightforward rock-physics relation-
ships between VP, rho, and pore pres-
sure. Still, it is rather appealing that 
the network captures such behavior. 
This is shown in the crossplot in 
Figure 7. The crossplot clearly shows 
that even with a rather simple rock-
physics model, shown with two solid 
black curves relating to specific litho-
logic packages, care has to be taken 
to avoid underfitting. (A similar argu-
ment applies for overfitting.) The final 
fit shows that the neural network does 
a reasonable job to capture both rock-
physics models.

All the QC steps, i.e., blind wells 
and crossplots, help one to make the 
right decision in justifying the perfor-
mance of neural networks in these 
applications. Such QC steps become 
more important for more complex 
regimes (i.e., neural networks must 
not be treated as a black box with a 
calculate button). For example, there 
is a mismatch between the manually 
interpreted volume curves for lime and 
sand and the neural network predicted 
values for the same curves in Figure 6 
(approximate depth 10,000 ft). There 
are two possible reasons for this — 
either the manual interpretation ben-
efits from additional data (core, com-
posite log, photoelectric absorption 
factor log) that the neural network 

does not include, or the manual interpretation has a subjective 
bias in it that the objective neural network does not. In both 
cases, lessons are learned that either the network would benefit 
from additional input data or that the manual interpretations 
may not be as uniform as originally thought. An example of 
the latter case can be seen in the blind well in Figure 5 (top) in 
which the slight inconsistency between the machine-learning-
based prediction and manually interpreted porosity and volume 
of kerogen (at around 8500 ft depth) is due to the error that 
must have occurred in the manual interpretation workflow (see 
“human error” track that shows deviation from a total sum of 
1 for the total mineral volumes).

Step 3: This part of the study focused on predicting various 
properties of interest, in this case pore pressure, Shmin, SHmax, 
and volume of kerogen, based on only compressional and shear 

Figure 7. Velocity-effective stress crossplots showing the well-based pore pressure (rock physics) models in black 
and the results of the machine learning algorithm for the training wells. The color scheme related to the facies 
within the wells: 1-3 = Leonard, 4-6 = Bone Springs, and 7-9 = Wolfcamp (see Figure 9 for more details). The 
right-hand plot shows the importance of correctly defining the number of iterations of the model to correctly fit the 
data. In the left-hand plot, where too little iteration was made, the data are biased to the upper rock-physics model 
and, hence, underfit to the correct rock-physics model for the shallow lithologies.

Figure 6. First blind test well outside the seismic survey. Despite the well being located approximately 50 km from 
the training wells, there is an excellent match between the well-based and machine-learning-based results at 
most depths. There is a mismatch in the upper section where the machine learning algorithm predicts higher  
lime/lower sand content relative to the well curves.
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velocity and density logs. Designing a network in such manner 
allows one to not only predict these properties at wells with 
limited available logs but also be able to predict based on inverted 
elastic properties from seismic amplitudes. An example of the 
former is shown in Figure 8, which is a well outside the seismic 
volume where direct measurements of pore pressure and Shmin 
were available from a single DFIT taken in the well. The well-
based predictions appear to match the DFIT values providing 
validation for the neural network. Also the seismic-based predic-
tions on the two wells inside the seismic volume are shown in 
the last four tracks on both panels in Figure 5 using the same 
neural network.

Because seismic resolution is limited by the frequency band-
width, the predicted properties demonstrate a deficiency in 
resolution when compared to manually interpreted logs in depth. 
Nonetheless, one can observe that there is a good overall match 
where the predicted logs capture the main behavior — i.e., high 
magnitudes versus low magnitudes. Upon the completion of 
these QCs at the blind wells, it is straightforward to apply the 
network to the entire volume of VP, VS, and density values derived 
from seismic inversion. This leads to volumetric models of pore 
pressure and geomechanical properties (Shmin and SHmax). These 
are shown in Figure 9. These volumetric models could be used 
to perform a sweet spot analysis, for example, based on multiple 

cut-offs for pore pressure, Shmin, and 
volume of kerogen.

Testing the results against the geo-
mechanical data also proves the accu-
racy of the pore pressure volumes as 
these are inputs into the geomechanical 
models. With that in mind, the values 
of the 3D property models are evident 
when blind wells that have drilled long 
lateral sections are used to compare 
production, using 60 days of cumulative 
oil production in barrels normalized to 
the length of the lateral, with the pore 
pressure volume. The upper panel in 
Figure 10 shows a horizontal section 
from a well drilled within the Leonard 
interval; plotted along the well path is 
the gas log recorded during drilling. 
The hot colors (red/yellow) indicate 
higher pore pressure within the interval, 
and the presence of elevated gas is 
clearly linked to areas of higher pore 
pressure in both the vertical and hori-
zontal sections. This relationship is 
clearly shown along the horizontal 
section as the majority of the well pen-
etrates dominantly low pressure (greens/
blues), and the gas level is low until the 
high-pressure zone at the toe of the 
lateral is penetrated at which point the 
gas level increases significantly.

Furthermore, if the 60-day normal-
ized cumulative oil production values 
are quoted for wells plotted within the 
same variably overpressured interval, 
then the role of high pore pressure in 
mapping out more productive zones is 
clear (lower panels in Figure 10). The 
well (A) that is consistently located 
within the high-pressure zone records 
cumulative oil production of more than 
61,000 barrels of oil, whereas the well 
that misses the highest pressures show 
returns of approximately 30% (18,000 
barrels) over the same timescale.

Figure 8. Second blind test well outside the seismic survey. In this well, there were limited petrophysics, so the 
machine learning algorithm was modified to be based on only VP, VS, and rho, which also provided the framework 
to upscale the approach into the seismic domain. There is an excellent match between the test results from a DFIT 
taken at the base of the well (black circles) and machine-learning-based results shown by the red curves.

Figure 9. Composite image showing the results of the machine learning algorithm when applied to the seismic 
inversion data. The input data were the facies (upper left) and volumes of VP, VS, and rho (not shown). The outputted 
pore pressure (cross section = upper right; time slice = left-hand bottom right) and minimum horizontal stress 
(cross section = lower left; time slice = right-hand bottom right).
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Conclusions
After discussing the standard workflows, a supervised deep 

neural network approach was introduced as an alternative innova-
tive tool for petrophysical, pore pressure, and geomechanics 
analysis enabling the use of all the previously collected and 
interpreted data to devise solutions which simultaneously inte-
grate wide-ranging wellbore and wireline logs. Furthermore, 
an algorithm was developed to predict a certain number of 
attributes solely from seismically derived properties, namely VP, 
VS, and density. The application of these algorithms on various 
blind wells from a Permian case study, both within and outside 
the seismic survey, show a reasonable accuracy when compared 
to manually interpreted counterparts, but they were obtained 
in a fraction of the time. The volumetric pore pressure model 
was also correlated consistently with cumulative production 
values from blind long horizontal wells. Of course, one can argue 
that the underlying rock-physics behavior in the case study is 
an ideal scenario with a relatively straightforward pore pressure 
system; however, the results show a promising outlook for the 
application of deep learning in integrated studies such as those 
shown in this paper. 
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Figure 10. The cross section shows the variation in predicted pore pressure (hot colors 
= high pressure) within the Leonard shale interval. In the upper image, a wellbore is 
plotted with the lateral section intercepting both higher and lower pressure sections. 
A gas log (thin curve along well trajectory) demonstrates that where the pore pressure 
is high — e.g., the toe of the lateral section — the well experiences higher gas 
levels while drilling. Conversely, where pore pressure is lower — e.g., the middle of 
the lateral section — very little gas response is recorded. The two cross sections at 
the base of the figure show examples of lateral sections from producing wells drilled 
within the Leonard shale interval. Where the lateral sections are located within the 
high-pressure zones (red), the 60-day cumulative oil production values, normalized 
to the length of the lateral, are approximately 61,000 barrels as opposed to 18,000 
barrels (approximately 30%) where the wells penetrate lower pressure shales.
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