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Summary 

 

Machine learning can play an important role in making 

subsurface quantitative interpretation workflows more 

efficient, consistent and potentially more accurate. Two 

workflows are shown in 1D and 3D applications. It is argued 

that the 1D cases are more about improving efficiency whilst 

the 3D cases have the potential to improve the accuracy. 

Examples are shown from conventional and unconventional 

basins. Beyond that it is demonstrated how one can combine 

deep learning and physics-based models to provide fast and 

accurate subsurface predictions.      

 

Introduction 

 

Machine learning can play an important role in making 

subsurface quantitative interpretation workflows more 

efficient and consistent which should ultimately lead to a 

more confident decision making process. There are two 

categories of machine learning workflows in subsurface 

quantitative interpretation and prediction: 

 

1. Train in 1D and apply in 1D: 

a) Training step: a model is calibrated to a 

relatively small number of wells (logs, cores) 

in the relevant basin or sub-basin. 

b) Application step: the calibrated model is 

applied to all the other wells in the same 

region of interest. 

 

This workflow is by and large about efficiency. For example, 

train a supervised model to predict, say, porosity, on 10 wells 

with manual interpretation, and apply to the other 90 wells.  

 

2. Train in 1D and apply in 3D: 

a) Training step: a model is calibrated to 

the data (logs, cores) of all wells, or a 

representative subset of the wells, in and 

around the 3D volume. 

b) Application step: the calibrated model is 

applied in 3D to seismic attributes and 

seismic inversion results (e.g. elastic 

properties).  

 

This workflow is mostly about improving accuracy and 

confidence. To date, upscaling the well-based models into 

3D has been performed using Rock Physics, e.g. a Rock 

Physics Model (calibrated to well data) transforms elastic 

properties into rock properties such as porosity or pore 

pressure. Machine learning improves on this by 

incorporating more information than merely the elastic 

properties, such as: well coordinates (so that lateral trends 

are captured), depth below datum (to incorporate 

compaction trends), temperature information (e.g. from a 

basin model), etc. 

 

However, it should be stressed that using machine learning 

to predict absolute quantities (e.g. porosity, pore pressure 

etc.) directly from seismic, a relative measure, is unphysical. 

Low frequencies must somehow be inserted, a process 

known as (model-based) seismic inversion. A facies-based 

seismic inversion (Zabihi Naeini and Exley, 2017) is optimal 

for this purpose, which means the outputs from this process 

are not only elastic properties but also a discrete facies 

distribution. 

 

In this paper applications of the above two categories of 

machine learning workflows to some key quantitative 

interpretation workflows in both conventional and 

unconventional reservoirs will be discussed. In the 

conventional reservoirs case, a machine learning based 

petrophysical interpretation, workflow 1 mentioned above, 

will be discussed in which uncertainty in the prediction is 

captured using a Bagging approach. In the unconventional 

case, a machine learning approach based on workflow 2 

above is shown for 3D sweet spot analysis by collectively 

predicting pore pressure, volume of Kerogen and 

geomechanical attributes. Both these examples are generally 

time consuming tasks if performed manually and hence it is 

demonstrated that machine learning can lead to both 

efficiency and accuracy. Beyond that it is demonstrated in 

workflow 2 how deep learning can be combined with 

physics-based models to provide fast and accurate 

subsurface predictions.  

 

Automatic petrophysical interpretation with 

uncertainty estimate    

 

Petrophysical interpretation of wells incorporates a holistic 

use of well data in which almost every aspect of the 

borehole/well data ought to be captured. The data should be 

processed consistently and rigorously across the study 

region.  With this labour intensive task complete, the 

question then is how to use this knowledge most effectively. 

That has two aspects: 1) the regional knowledge is not 

effectively used for new wells unless done by an experienced 

interpreter and nonetheless it would still require manual 

interpretation, 2) when the experienced practitioners leave, 

the knowledge could be lost from the organisation. This is 

where the implementation of machine learning workflow 1 

above could potentially address these challenges. Once an 

appropriate machine learning algorithm is trained then the 

applications to new wells can be extremely fast (i.e. in the 

order of seconds as opposed to a day or two for manual 
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A machine learning approach to quantitative interpretation 

interpretation). Also once the algorithm is trained then all the 

knowledge is effectively stored so the model can always be 

called on demand for a quick petrophysical interpretation. 

This is shown on some Central North Sea (CNS) wells. 

Interestingly, machine learning algorithms can be further 

improved by means of “transfer learning” if and when new 

data are available. 

 

In this study 30 wells from CNS have been used for training. 

These CNS wells contain a comprehensive suite of 

petrophysical data which were derived through a rigorous, 

multi-phased regional analysis.  Raw logs underwent 

detailed quality control (QC) and correction for borehole and 

environmental conditions and waveform sonic array data 

were QC’d in detail to ensure robust compressional and 

shear sonic logs were available for rock physics analysis.  

Full petrophysical interpretation was then performed, 

interval by interval and combining information from 

wireline and MWD, pressure data (MDT, RFT, Mudlogs 

etc.), core data (RCAL and SCAL), sedimentology, XRD 

and daily drilling reports.  The final petrophysical 

interpretation database is internally consistent across a 

region covering some 37,000 km2, and captures a wide 

variety of input data types over the full stratigraphic column 

from the Permian up to the Eocene. 

 

Facilitated by deep learning, a bootstrap aggregating 

method, known as Bagging (Geron, 2017), which is a form 

of ensemble learning, was implemented for training. The 

implemented algorithm allows one to understand the 

uncertainty across different machine learning models to the 

same extent as if the data was given to different 

petrophysicist for interpretation in which each would come 

up with a different answer. Instead here deep neural 

networks play the role of an interpreter. The input logs were 

gamma ray, p-sonic velocity, resistivity, neutron, density, 

and depth logs. The algorithm was trained to predict volume 

of sand, shale, limestone and fluid saturation logs 

simultaneously. Estimating uncertainty is key, especially in 

cases where there are not enough data coverage for all 

lithologies and/or the lack of good quality data. The bagging 

approach proposed here provides a fast and also accurate 

enough solution for the first pass, enabling petrophysicists to 

validate the results using the completion plots and well 

reports. The result on one of the blind wells used for cross-

validating the model is shown in Figure 1. The bagging 

approach first computes the petrophysical logs 

simultaneously along with the uncertainty estimate for each 

curve (Figure 1-top). Note, this process takes seconds as the 

application to new wells are fast once the algorithm is 

trained. The practitioner can then monitor the outcomes, 

cross check against completion logs (Figure 1-middle) and 

finalise the outputs accordingly (Figure 1-bottom). As can 

be observed the machine learning predictions demonstrate a 

good accuracy when compared with the full manual 

interpretation but in a fraction of time and with an 

uncertainty estimate. 

   

3D sweet spot analysis  

 

Predicting the facies distribution is of course critical for 

petrophysics (workflow 1 may be used) and reservoir 

modelling (a 3D facies image is a direct result of the facies-

based seismic inversion). An accurate prediction of pressure 

and stress is critical to drill wells safely (e.g. avoiding 

breakout and drilling induced tensile fractures whilst 

drilling) and completing them (e.g. optimising hydro-

fractures), and is also a key fluid-drive mechanism, and as 

such may correlate to production, especially in 

unconventional wells (Green et al., 2018). A pore pressure 

model may be calibrated as part of workflow 1 above, to 

propagate to all wells not used in the training (time saving 

over doing all wells manually, at ca. 2 days per well) and 

may then be used to predict pore pressure in 3D as part of 

workflow 2.  

 

Especially in unconventional plays, wells are drilled at an 

unprecedented rate. Performing classical workflows for 

facies classification, petrophysics, pore pressure and 

geomechanics prediction on all these wells can be 

impractical (if not impossible) due to turnaround 

considerations. This, together with technical challenges in 

terms of complex stratigraphy, multiple play types, laterally 

variable rock properties and the complex interaction 

between pore pressure and geomechanics, calls for more 

consistent, sophisticated, and faster analytical tools. Hence a 

supervised deep neural network approach is introduced as an 

alternative tool for facies classification, petrophysical, pore 

pressure and geomechanics analysis enabling the use of all 

the previously collected and interpreted data to devise 

solutions which simultaneously integrate wide ranging well 

data.  

 

The deep neural networks can work in a cascaded manner 

such that the outputs from one forms the inputs to the other. 

That means the outputs from a neural network trained to 

simultaneously predict multi-mineral volumes and porosity 

are fed to a subsequent neural network to predict pore 

pressure. Of course crossvalidation was performed to QC the 

outcomes at each step. At the final step, to extend the 

prediction to 3D, a neural network is designed in such a 

manner that certain properties, e.g. pore pressure, are derived 

from elastic logs solely (so that this neural net, once properly 

trained, can be used in workflow 2). The ensuing 3D earth 

model of facies, rock properties, pore pressure and stress 

state is derived with a faster turnaround time than standard 

workflows, and is also potentially superior in a way that it 

can incorporate other 3D quantities such as well coordinates, 

depth below datum, temperature, etc. Figure 2 shows a 3D 

view of potential sweet spots obtained using a conditional 
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combination of pore pressure, stress state and volume of 

Kerogen outputs from deep neural networks applied in 3D 

using the seismic inversion elastic attributes as an input. 

Interestingly this workflow can readily be extended to 

predict well productivity credibly prior to drilling wells 

leading to a robust validation of this innovative technology. 

 

 

 
 

Figure 1 Top: well log panel summarising the result of petrophysical interpretation done manually (black) and automatically by means of bagging 

various neural network models (blue curves show the uncertainty around the mean in red). Middle: cross check with the completion log whether 

sands are brine bearing at ~ 11300 ft depth. Bottom: final outputs in red versus manual interpretation in black.    
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A machine learning approach to quantitative interpretation 

 

 

 

Conclusions 

 

Two machine learning approaches are proposed to make 

some key quantitative interpretation workflows faster and 

potentially more accurate. Examples in both conventional 

and unconventional reservoirs are demonstrated and 

furthermore a Bagging approach is introduced to capture the 

uncertainty. It is also shown that deep neural networks in 

combination with physics based models can provide fast and 

accurate subsurface predictions. In this case a chain of deep 

neural network performed various predictions based on well 

logs in which the last chain was trained using only elastic 

well logs. That facilitates the application to 3D using the 

elastic properties obtained from seismic inversion.  

 

 
 

Figure 2: 3D geobody based on conditional cut-offs of pore pressure, stress state and volume of Kerogen predicted in 3D using 

a deep neural network.  
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