Industry leading rock physics, 2D modeling and well to seismic tie solution delivering easy to use solutions for both generalist and expert quantitative interpretation practitioners. Seamlessly combine core, log and seismic data into predictive models that can be used to characterize the seismic response in both conventional and unconventional settings, reducing interpretation cycle times and enhancing the accuracy and robustness of subsurface interpretations. Rapid model construction and assessment delivers better than ever understanding of subsurface uncertainty.

Industry Challenges

- Increasingly challenging drilling environments
- Mature areas with subtle hydrocarbon traps
- New play types and frontier settings
- Time wasted and errors made transferring data between multiple software packages
- Workflows are time consuming and inefficient
- Analogues under-utilized
- Failure to capture and evaluate sufficient geological scenarios
- Lack of cross-discipline integration
- Risk and uncertainty are poorly understood

Benefits

- Single easy to use platform
- Comprehensive library of rock physics functionality for all play types
- Cross-discipline workflows for exploration through to production
- QC and calibrate core, log, VSP and seismic data
- Integrate multiple data types and capture uncertainties
- Quickly and easily evaluate ‘what-if’ scenarios to understand influences affecting seismic signatures
- Recipe based workflows embedded in easy to use GUIs
- Automated QC procedures
- Establish and deploy play based interpretation strategies

Rock Physics Module Add-ons

<table>
<thead>
<tr>
<th>Rock Physics Module</th>
<th>Add-ons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anisotropy</td>
<td>Build 1D and 2D synthetic seismic models to explore the impact of anisotropy on the seismic response. Key features include: Thomsen parameter estimation, VTI/HTI and orthorhombic model building, anisotropy database, plane wave analysis and blocky modeling.</td>
</tr>
<tr>
<td>Attrimod</td>
<td>Multi-scenario, multi-2D synthetic seismic modeling package for rapid generation of hundreds of geologically plausible models. Key features include: multi-2D modeling and attribute sections, lithology and fluid substitution workflows, ray synthetics including Q and spherical divergence corrections.</td>
</tr>
<tr>
<td>Advanced WellTie</td>
<td>Wavelet analysis and estimation functionality for improved handling of low frequencies in broadband, nodal and onshore seismic datasets. Key functionality includes: Roy White multi-taper method, Parametric constant phase and Bayesian multi-well multi-stack estimation with broadband priors.</td>
</tr>
<tr>
<td>VSP</td>
<td>Specialist analysis tools for offset, walkaway, walk-around and multi-component VSP datasets. Key functionality includes: common processing routines through to corridor stack, shear splitting / hodogram analysis and rose diagrams for fracture characterization.</td>
</tr>
<tr>
<td>RokProbe</td>
<td>Compute large numbers of pseudo wells and populate with statistical rock property information for development of net pay uncertainty maps and rock physics priors for seismic characterization. Key features include: bed thickness distribution, statistical rock physics, multi-pseudo well generation.</td>
</tr>
</tbody>
</table>
Technical Features

- Direct connectivity to Petrel* and other 3rd party software using Open Spirit connector
- Batch loading of core, well and seismic datasets
- Rich QC and editing via log and cross-plotter functionality
- Single, matrix and user defined cross-plotting with well viewer interactivity
- Comprehensive log prediction function for elastic log data
- Extensive library of rock physics models for conventional and unconventional resources
- Absolute and relative rock physics workflows for inversion feasibility
- Extensive log upscaling including filtering, Backus averaging and facies based upscaling
- Log blocking for synthetic seismic calculation
- Blocky modeling for quick look AVO analysis
- Comprehensive post/pre-stack synthetic seismic modeling, including Fatti, Modified Shuey, Zoeppritz, full wavefield, ray parameter etc.
- Wavelet estimation using statistical and Roy White methods
- Wavelet analysis, editing and averaging
- Comprehensive well-tie functionality for vertical and deviated well bores
- Sophisticated conceptual and quantitative 2D seismic forward modeling
- Full integration with Pressure Prediction and Reservoir Characterization modules

Supported Data Types

- Raw well logs
- Composite, processed well logs
- Interpreted well logs
- Image Logs (surface sets, DITF)
- Discrete value sets
- Checkshot data
- Directional surveys
- Formation tops / markers
- Core data (PoroPerm, Elastic)
- SCAL (Capcurves)
- Litho / chronostratigraphy schemes
- Mud logs
- Pressure data (MDT, RFT etc)
- Integrity data (FIT, LOT etc)
- Drilling event data
- Breakouts
- VSP (zero offset/walk-around)
- Post-stack seismic
- Pre-stack seismic
- Horizons
- Corner Point Grids (CPG’s)
- Polygons

Data Import Formats

- LAS
- DLIS
- ASCII
- XLS
- JPEG
- TIFF
- ECLIPSE.EGRID
- ECLIPSE.GRDCL
- SGRID
- WVL
- WAV
- WAVE
- Import from secondary project
- Import from external project
- Import from Theseus
- Petrel* Interconnector
- Open Spirit

System Requirements

RokDoc is supported on the following operating systems:

- 64bit Windows: Windows 7, Windows 10
- 64bit Linux: RHEL 6, RHEL7

Processor / hard disk requirement:
- Preferred: dual quad core processor / SSD
- Minimum: quad core processor / fast rotational speed HDD

System Memory (RAM) requirement:
- Preferred: 64GB
- Minimum: 8GB (16GB practical minimum for RokDoc 3D / ChronoSeis)

Graphics card requirement:
- Preferred: NVIDIA Quadro K5200 (desktop) / NVIDIA Quadro K5100M (laptop)
- Minimum: NVIDIA Quadro K4200 (desktop) / NVIDIA Quadro K3100M (laptop)

Visit www.ikonscience.com or email info@ikonscience.com to discover more and request a demo.